Mostrar el registro sencillo del ítem
dc.contributor.author | Brentan, Bruno M. | es_ES |
dc.contributor.author | Luvizotto, E. | es_ES |
dc.contributor.author | Herrera Fernández, Antonio Manuel | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.contributor.author | Pérez García, Rafael | es_ES |
dc.date.accessioned | 2018-07-16T06:47:45Z | |
dc.date.available | 2018-07-16T06:47:45Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105819 | |
dc.description.abstract | [EN] The most important factor in planning and operating water distribution systems is satisfying consumer demand. This means continuously providing users with quality water in adequate volumes at reasonable pressure, thus ensuring reliable water distribution. In recent years, the application of statistical, machine learning, and artificial intelligence methodologies has been fostered for water demand forecasting. However, there is still room for improvement; and new challenges regarding on-line predictive models for water demand have appeared. This work proposes applying support vector regression, as one of the currently better machine learning options for short-term water demand forecasting, to build a base prediction. On this model, a Fourier time series process is built to improve the base prediction. This addition produces a tool able to eliminate many of the errors and much of the bias inherent in a fixed regression structure when responding to new incoming time series data. The final hybrid process is validated using demand data from a water utility in Franca, Brazil. Our model, being a near real-time model for water demand, may be directly exploited in water management decision-making processes. (C) 2016 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been partially supported by CAPES Foundation of Brazil’s Ministry of Education. The data were provided by SABESP, São Paulo state water management company. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Demand forecasting | es_ES |
dc.subject | Water supply | es_ES |
dc.subject | Fourier series | es_ES |
dc.subject | Support vector regression | es_ES |
dc.subject | Near real-time algorithms | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Hybrid regression model for near real-time urban water demand forecasting | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1016/j.cam.2016.02.009 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-01-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Brentan, BM.; Luvizotto, E.; Herrera Fernández, AM.; Izquierdo Sebastián, J.; Pérez García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics. 309:532-541. doi:10.1016/j.cam.2016.02.009 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | Mathematical Modelling in Engineering & Human Behaviour 2015. 17th Edition of the Mathematical Modelling Conference Series at the Institute for Multidisciplinary Mathematics | es_ES |
dc.relation.conferencedate | Septiembre 09-11,2015 | es_ES |
dc.relation.conferenceplace | Valencia, Spain | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.cam.2016.02.009 | es_ES |
dc.description.upvformatpinicio | 532 | es_ES |
dc.description.upvformatpfin | 541 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 309 | es_ES |
dc.relation.pasarela | S\302393 | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil |