- -

Randomizing the parameters of a Markov chain to model the stroke disease: A technical generalization of established computational methodologies towards improving real applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Randomizing the parameters of a Markov chain to model the stroke disease: A technical generalization of established computational methodologies towards improving real applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Navarro-Quiles, A. es_ES
dc.contributor.author Romero, José-Vicente es_ES
dc.contributor.author Roselló, María-Dolores es_ES
dc.date.accessioned 2018-07-16T06:48:16Z
dc.date.available 2018-07-16T06:48:16Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105820
dc.description.abstract [EN] Classical Markov models are defined through a stochastic transition matrix, i.e., a matrix whose columns (or rows) are deterministic values representing transition probabilities. However, in practice these quantities could often not be known in a deterministic manner, therefore, it is more realistic to consider them as random variables. Following this approach, this paper is aimed to give a technical generalization of classical Markov methodology in order to improve modelling of stroke disease when dealing with real data. With this goal, we randomize the entries of the transition matrix of a Markov chain with three states (susceptible, reliant and deceased) that has been previously proposed to model the stroke disease. This randomization of the classical Markov model permits the computation of the first probability density function of the solution stochastic process taking advantage of the so-called Random Variable Transformation technique. Afterwards, punctual and probabilistic predictions are computed from the first probability density function. In addition, the probability density functions of the time instants until a certain proportion of the total population remains susceptible, reliant and deceased are also computed. The study is completed showing the usefulness of our computational approach to determine, from a probabilistic point of view, key quantities in medical decision making, such as the cost-effectiveness ratio. es_ES
dc.description.sponsorship This work has been partially supported by the Ministerio de Economia y Competitividad grant MTM2013-41765-P. Ana Navarro-Quiles acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. Authors would like to thank Prof. Dr. Javier Mar for providing them medical data about stroke disease from his research.
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Markov process es_ES
dc.subject Disease modelling es_ES
dc.subject Random variable transformation technique es_ES
dc.subject Computing the first probability density function es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Randomizing the parameters of a Markov chain to model the stroke disease: A technical generalization of established computational methodologies towards improving real applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2017.04.040 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2017). Randomizing the parameters of a Markov chain to model the stroke disease: A technical generalization of established computational methodologies towards improving real applications. Journal of Computational and Applied Mathematics. 324:225-240. https://doi.org/10.1016/j.cam.2017.04.040 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.cam.2017.04.040 es_ES
dc.description.upvformatpinicio 225 es_ES
dc.description.upvformatpfin 240 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 324 es_ES
dc.relation.pasarela S\337644 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem