Mostrar el registro sencillo del ítem
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Villafuerte, Laura | es_ES |
dc.contributor.author | Burgos-Simon, Clara | es_ES |
dc.date.accessioned | 2018-07-16T06:56:40Z | |
dc.date.available | 2018-07-16T06:56:40Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1660-5446 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105851 | |
dc.description.abstract | [EN] In this paper a new version of the chain rule for calculat- ing the mean square derivative of a second-order stochastic process is proven. This random operational calculus rule is applied to construct a rigorous mean square solution of the random Chebyshev differential equation (r.C.d.e.) assuming mild moment hypotheses on the random variables that appear as coefficients and initial conditions of the cor- responding initial value problem. Such solution is represented through a mean square random power series. Moreover, reliable approximations for the mean and standard deviation functions to the solution stochastic process of the r.C.d.e. are given. Several examples, that illustrate the theoretical results, are included. | es_ES |
dc.description.sponsorship | This work was completed with the support of our TEX-pert. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mediterranean Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mean square chain rule | es_ES |
dc.subject | Random Chebyshev differential equation | es_ES |
dc.subject | Mean square and mean fourth calculus | es_ES |
dc.subject | Monte Carlo simulations | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A mean square chain rule and its application in solving the random Chebyshev differential equation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00009-017-0853-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cortés, J.; Villafuerte, L.; Burgos-Simon, C. (2017). A mean square chain rule and its application in solving the random Chebyshev differential equation. Mediterranean Journal of Mathematics. 14(1):14-35. https://doi.org/10.1007/s00009-017-0853-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s00009-017-0853-6 | es_ES |
dc.description.upvformatpinicio | 14 | es_ES |
dc.description.upvformatpfin | 35 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\337826 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Analytic stochastic process solutions of second-order random differential equations. Appl. Math. Lett. 23(12), 1421–1424 (2010). doi: 10.1016/j.aml.2010.07.011 | es_ES |
dc.description.references | El-Tawil, M.A., El-Sohaly, M.: Mean square numerical methods for initial value random differential equations. Open J. Discret. Math. 1(1), 164–171 (2011). doi: 10.4236/ojdm.2011.12009 | es_ES |
dc.description.references | Khodabin, M., Maleknejad, K., Rostami, K., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge Kutta methods. Math. Comp. Model. 59(9–10), 1910–1920 (2010). doi: 10.1016/j.mcm.2011.01.018 | es_ES |
dc.description.references | Santos, L.T., Dorini, F.A., Cunha, M.C.C.: The probability density function to the random linear transport equation. Appl. Math. Comput. 216(5), 1524–1530 (2010). doi: 10.1016/j.amc.2010.03.001 | es_ES |
dc.description.references | González Parra, G., Chen-Charpentier, B.M., Arenas, A.J.: Polynomial Chaos for random fractional order differential equations. Appl. Math. Comput. 226(1), 123–130 (2014). doi: 10.1016/j.amc.2013.10.51 | es_ES |
dc.description.references | El-Beltagy, M.A., El-Tawil, M.A.: Toward a solution of a class of non-linear stochastic perturbed PDEs using automated WHEP algorithm. Appl. Math. Model. 37(12–13), 7174–7192 (2013). doi: 10.1016/j.apm.2013.01.038 | es_ES |
dc.description.references | Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterran. J. Math. 12(3), 1123–1140 (2015). doi: 10.1007/s00009-014-0452-8 | es_ES |
dc.description.references | Villafuerte, L., Braumann, C.A., Cortés, J.C., Jódar, L.: Random differential operational calculus: theory and applications. Comp. Math. Appl. 59(1), 115–125 (2010). doi: 10.1016/j.camwa.2009.08.061 | es_ES |
dc.description.references | Øksendal, B.: Stochastic differential equations: an introduction with applications, 6th edn. Springer, Berlin (2007) | es_ES |
dc.description.references | Soong, T.T.: Random differential equations in science and engineering. Academic Press, New York (1973) | es_ES |
dc.description.references | Wong, B., Hajek, B.: Stochastic processes in engineering systems. Springer Verlag, New York (1985) | es_ES |
dc.description.references | Arnold, L.: Stochastic differential equations. Theory and applications. John Wiley, New York (1974) | es_ES |
dc.description.references | Cortés, J.C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010). doi: 10.1016/j.camwa.2010.05.046 | es_ES |
dc.description.references | Calbo, G., Cortés, J.C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comp. 218(7), 3654–3666 (2011). doi: 10.1016/j.amc.2011.09.008 | es_ES |
dc.description.references | Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Comp. Math. Appl. 61(9), 2782–2792 (2010). doi: 10.1016/j.camwa.2011.03.045 | es_ES |
dc.description.references | Cortés, J.C., Jódar, L., Company, R., Villafuerte, L.: Laguerre random polynomials: definition, differential and statistical properties. Utilit. Math. 98, 283–293 (2015) | es_ES |
dc.description.references | Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comp. Appl. Math. 309, 383–395 (2017). doi: 10.1016/j.cam.2016.01.034 | es_ES |
dc.description.references | Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Romanian Reports Physics 65(2), 1237–1244 (2013) | es_ES |
dc.description.references | Khalaf, S.L.: Mean square solutions of second-order random differential equations by using homotopy perturbation method. Int. Math. Forum 6(48), 2361–2370 (2011) | es_ES |
dc.description.references | Khudair, A.R., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 5(49), 2521–2535 (2011) | es_ES |
dc.description.references | Agarwal, R.P., O’Regan, D.: Ordinary and partial differential equations. Springer, New York (2009) | es_ES |