- -

Calibrating a flow model in an irrigation network: Case study in Alicante, Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibrating a flow model in an irrigation network: Case study in Alicante, Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Sánchez, Modesto es_ES
dc.contributor.author Sánchez-Romero, Francisco-Javier es_ES
dc.contributor.author Ramos, Helena M. es_ES
dc.contributor.author López Jiménez, Petra Amparo es_ES
dc.date.accessioned 2018-07-16T07:00:17Z
dc.date.available 2018-07-16T07:00:17Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105865
dc.description.abstract [EN] The usefulness of models depends on their validation in a calibration process, ensuring that simulated flows and pressure values in any line are really occurring and, therefore, becoming a powerful decision tool for many aspects in the network management (i.e., selection of hydraulic machines in pumped systems, reduction of the installed power in operation, analysis of theoretical energy recovery). A new proposed method to assign consumptions patterns and to determine flows over time in irrigation networks is calibrated in the present research. As novelty, the present paper proposes a robust calibration strategy for flow assignment in lines, based on some key performance indicators (KPIF) coming from traditional hydrological models (Nash-Sutcliffe coefficient (non-dimensional index), root relative square error (error index) and percent bias (tendency index)). The proposed strategy for calibration was applied to a real case in Alicante (Spain), with a goodness of fit considered as very good in many indicators. KPIF parameters observed present a satisfactory goodness of fit of the series, considering their repeatability. Average Nash-Sutcliffe coefficient value oscillated between 0.30 and 0.63, average percent bias values were below 10% in all the range, and average root relative square error values varied between 0.65 and 0.80. es_ES
dc.language Inglés es_ES
dc.publisher Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria es_ES
dc.relation.ispartof Spanish Journal of Agricultural Research (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Water management es_ES
dc.subject Calibration model es_ES
dc.subject Key Performance Indicators (KPIs) es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Calibrating a flow model in an irrigation network: Case study in Alicante, Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5424/sjar/2017151-10144 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Pérez-Sánchez, M.; Sánchez-Romero, F.; Ramos, HM.; López Jiménez, PA. (2017). Calibrating a flow model in an irrigation network: Case study in Alicante, Spain. Spanish Journal of Agricultural Research (Online). 15(1):1-13. doi:10.5424/sjar/2017151-10144 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.5424/sjar/2017151-10144 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2171-9292 es_ES
dc.relation.pasarela S\328120 es_ES
dc.description.references Abbasi, F., Feyen, J., & van Genuchten, M. T. (2004). Two-dimensional simulation of water flow and solute transport below furrows: model calibration and validation. Journal of Hydrology, 290(1-2), 63-79. doi:10.1016/j.jhydrol.2003.11.028 es_ES
dc.description.references Arbat, G., Pujol, J., Pelegrí, M., Puig-Bargués, J., Duran-Ros, M., & Ramírez de Cartagena, F. (2013). An approach to costs and energy consumption in private urban Spanish Mediterranean landscapes from a simplified model in sprinkle irrigation. Spanish Journal of Agricultural Research, 11(1), 244. doi:10.5424/sjar/2013111-3113 es_ES
dc.description.references De Boissezon, J., & Haït, J.-R. (1965). Calcul des débits dans les réseaux d’irrigation. La Houille Blanche, (2), 159-164. doi:10.1051/lhb/1965016 es_ES
dc.description.references Braun JV, Ruel MT, Gillespie S, 2010. Calibration of hydraulic of network model. In: Water distribution systems handbook; Mays LW (ed), pp: 279-304. McGraw-Hills, Arizona, USA. es_ES
dc.description.references Butera, I., & Balestra, R. (2015). Estimation of the hydropower potential of irrigation networks. Renewable and Sustainable Energy Reviews, 48, 140-151. doi:10.1016/j.rser.2015.03.046 es_ES
dc.description.references Cabrera, E., Cabrera, E., Cobacho, R., & Soriano, J. (2014). Towards an Energy Labelling of Pressurized Water Networks. Procedia Engineering, 70, 209-217. doi:10.1016/j.proeng.2014.02.024 es_ES
dc.description.references Cabrera J, 2009. Calibración de modelos hidrológicos. Instituto para la Mitigación de los Efectos del Fenómeno el Ni-o, Lima, Perú. es_ES
dc.description.references Carravetta, A., Del Giudice, G., Fecarotta, O., & Ramos, H. M. (2012). Energy Production in Water Distribution Networks: A PAT Design Strategy. Water Resources Management, 26(13), 3947-3959. doi:10.1007/s11269-012-0114-1 es_ES
dc.description.references Carravetta, A., del Giudice, G., Fecarotta, O., & Ramos, H. (2013). PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation. Energies, 6(1), 411-424. doi:10.3390/en6010411 es_ES
dc.description.references Carravetta, A., Fecarotta, O., Del Giudice, G., & Ramos, H. (2014). Energy Recovery in Water Systems by PATs: A Comparisons among the Different Installation Schemes. Procedia Engineering, 70, 275-284. doi:10.1016/j.proeng.2014.02.031 es_ES
dc.description.references Choulot A, 2010. Energy recovery in existing infrastructures with small hydropower plants. FP6 Project Shapes (Work Package 5-WP5). European Directorate for Transport and Energy. es_ES
dc.description.references Clark C, Wu ZY, 2006. Integrated hydraulic model and genetic algorithm optimization for informed analysis of a real water system. 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, OH, USA. es_ES
dc.description.references CLÉMENT, R. (1966). Calcul des débits dans les réseaux d’irrigation fonctionnant à la demande. La Houille Blanche, (5), 553-576. doi:10.1051/lhb/1966034 es_ES
dc.description.references Corominas, J. (2010). Agua y energía en el riego, en la época de la sostenibilidad. Ingeniería del agua, 17(3). doi:10.4995/ia.2010.2977 es_ES
dc.description.references Datta, R. S. N., & Sridharan, K. (1994). Parameter Estimation in Water‐Distribution Systems by Least Squares. Journal of Water Resources Planning and Management, 120(4), 405-422. doi:10.1061/(asce)0733-9496(1994)120:4(405) es_ES
dc.description.references Davidson, J. W., & Bouchart, F. J.-C. (2006). Adjusting Nodal Demands in SCADA Constrained Real-Time Water Distribution Network Models. Journal of Hydraulic Engineering, 132(1), 102-110. doi:10.1061/(asce)0733-9429(2006)132:1(102) es_ES
dc.description.references Delgoda, D., Malano, H., Saleem, S. K., & Halgamuge, M. N. (2016). Irrigation control based on model predictive control (MPC): Formulation of theory and validation using weather forecast data and AQUACROP model. Environmental Modelling & Software, 78, 40-53. doi:10.1016/j.envsoft.2015.12.012 es_ES
dc.description.references Emec, S., Bilge, P., & Seliger, G. (2015). Design of production systems with hybrid energy and water generation for sustainable value creation. Clean Technologies and Environmental Policy, 17(7), 1807-1829. doi:10.1007/s10098-015-0947-4 es_ES
dc.description.references Ghiassi, M., Zimbra, D. K., & Saidane, H. (2008). Urban Water Demand Forecasting with a Dynamic Artificial Neural Network Model. Journal of Water Resources Planning and Management, 134(2), 138-146. doi:10.1061/(asce)0733-9496(2008)134:2(138) es_ES
dc.description.references Granados A, 1986. Redes colectivas del riego a presión. Escuela de Ingenieros de Caminos y Puertos, Univ. Politécnica, Madrid. es_ES
dc.description.references Granados, A., Martín-Carrasco, F. J., García de Jalón, S., & Iglesias, A. (2015). Adaptation of irrigation networks to climate change: Linking robust design and stakeholder contribution. Spanish Journal of Agricultural Research, 13(4), e1205. doi:10.5424/sjar/2015134-7549 es_ES
dc.description.references Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1999). Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering, 4(2), 135-143. doi:10.1061/(asce)1084-0699(1999)4:2(135) es_ES
dc.description.references Lamaddalena N, Sagardoy JA, 2000. Performance analysis of on-demand pressurized irrigation systems. FAO, Roma, Italy. 132 pp. es_ES
dc.description.references Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018 es_ES
dc.description.references Martínez-Solano, J., Iglesias-Rey, P. L., Pérez-García, R., & López-Jiménez, P. A. (2008). Hydraulic Analysis of Peak Demand in Looped Water Distribution Networks. Journal of Water Resources Planning and Management, 134(6), 504-510. doi:10.1061/(asce)0733-9496(2008)134:6(504) es_ES
dc.description.references McCuen, R. H., Knight, Z., & Cutter, A. G. (2006). Evaluation of the Nash–Sutcliffe Efficiency Index. Journal of Hydrologic Engineering, 11(6), 597-602. doi:10.1061/(asce)1084-0699(2006)11:6(597) es_ES
dc.description.references Moreno, M. A., Planells, P., Ortega, J. F., & Tarjuelo, J. (2007). New Methodology to Evaluate Flow Rates in On-Demand Irrigation Networks. Journal of Irrigation and Drainage Engineering, 133(4), 298-306. doi:10.1061/(asce)0733-9437(2007)133:4(298) es_ES
dc.description.references D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153 es_ES
dc.description.references Mulligan, A. E., & Brown, L. C. (1998). Genetic Algorithms for Calibrating Water Quality Models. Journal of Environmental Engineering, 124(3), 202-211. doi:10.1061/(asce)0733-9372(1998)124:3(202) es_ES
dc.description.references Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6 es_ES
dc.description.references Pardo, M. A., Manzano, J., Cabrera, E., & García-Serra, J. (2013). Energy audit of irrigation networks. Biosystems Engineering, 115(1), 89-101. doi:10.1016/j.biosystemseng.2013.02.005 es_ES
dc.description.references Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2016). Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water, 8(6), 234. doi:10.3390/w8060234 es_ES
dc.description.references Preis, A., Whittle, A., & Ostfeld, A. (2009). Online Hydraulic State Prediction for Water Distribution Systems. World Environmental and Water Resources Congress 2009. doi:10.1061/41036(342)32 es_ES
dc.description.references Pulido-Calvo, I., Roldán, J., López-Luque, R., & Gutiérrez-Estrada, J. C. (2003). Water Delivery System Planning Considering Irrigation Simultaneity. Journal of Irrigation and Drainage Engineering, 129(4), 247-255. doi:10.1061/(asce)0733-9437(2003)129:4(247) es_ES
dc.description.references Ramos, H., & Borga, A. (1999). Pumps as turbines: an unconventional solution to energy production. Urban Water, 1(3), 261-263. doi:10.1016/s1462-0758(00)00016-9 es_ES
dc.description.references Ramos, H. M., Mello, M., & De, P. K. (2010). Clean power in water supply systems as a sustainable solution: from planning to practical implementation. Water Science and Technology: Water Supply, 10(1), 39-49. doi:10.2166/ws.2010.720 es_ES
dc.description.references Ramos H, Vieira F, Covas DIC, 2010b. Energy efficiency in a water supply system: Energy consumption and CO2 emission. Water Sci Eng 3: 331-340. es_ES
dc.description.references Rodriguez-Diaz, J. A., Camacho-Poyato, E., & Carrillo-Cobo, M. T. (2010). The role of energy audits in irrigated areas. The case of ‘Fuente Palmera’ irrigation district (Spain). Spanish Journal of Agricultural Research, 8(S2), 152. doi:10.5424/sjar/201008s2-1358 es_ES
dc.description.references Rossman LA, 2000. Epanet Manual. Cincinnati, OH, USA. es_ES
dc.description.references Sanz, G., & Pérez, R. (2014). Demand Pattern Calibration in Water Distribution Networks. Procedia Engineering, 70, 1495-1504. doi:10.1016/j.proeng.2014.02.164 es_ES
dc.description.references Sanz, G., & Pérez, R. (2015). Comparison of demand calibration in water distribution networks using pressure and flow sensors. Procedia Engineering, 119, 771-780. doi:10.1016/j.proeng.2015.08.933 es_ES
dc.description.references Singh, J., Knapp, H. V., Arnold, J. G., & Demissie, M. (2005). HYDROLOGICAL MODELING OF THE IROQUOIS RIVER WATERSHED USING HSPF AND SWAT. Journal of the American Water Resources Association, 41(2), 343-360. doi:10.1111/j.1752-1688.2005.tb03740.x es_ES
dc.description.references Soler, J., Latorre, J., & Gamazo, P. (2016). Alternative Method to the Clément’s First Demand Formula for Estimating the Design Flow Rate in On-Demand Pressurized Irrigation Systems. Journal of Irrigation and Drainage Engineering, 142(7), 04016024. doi:10.1061/(asce)ir.1943-4774.0001012 es_ES
dc.description.references Tabesh, M., Jamasb, M., & Moeini, R. (2011). Calibration of water distribution hydraulic models: A comparison between pressure dependent and demand driven analyses. Urban Water Journal, 8(2), 93-102. doi:10.1080/1573062x.2010.548525 es_ES
dc.description.references Willmott CJ, 1981. On the validations models. Phys Geogr 2 (2): 184-194. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem