Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Vassileva, Maria P. | es_ES |
dc.date.accessioned | 2018-07-16T07:00:44Z | |
dc.date.available | 2018-07-16T07:00:44Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0259-9791 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105866 | |
dc.description.abstract | [EN] Many problems related to gas dynamics, heat transfer or chemical reactions are modeled by means of partial differential equations that usually are solved by using approximation techniques. When they are transformed in nonlinear systems of equations via a discretization process, this system is big-sized and high-order iterative methods are specially useful. In this paper, we construct a new family of parametric iterative methods with arbitrary even order, based on the extension of Ostrowski' and Chun's methods for solving nonlinear systems. Some elements of the proposed class are known methods meanwhile others are new schemes with good properties. Some numerical tests confirm the theoretical results and allow us to compare the numerical results obtained by applying new methods and known ones on academical examples. In addition, we apply one of our methods for approximating the solution of a heat conduction problem described by a parabolic partial differential equation. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | System of nonlinear equations | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Order of convergence | es_ES |
dc.subject | Heat conduction problem | es_ES |
dc.subject | Divided differences | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A family of parametric schemes of arbitrary even order for solving nonlinear models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10910-016-0723-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDOCYT//2014-1C1-088/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-08-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). A family of parametric schemes of arbitrary even order for solving nonlinear models. Journal of Mathematical Chemistry. 55(7):1443-1460. https://doi.org/10.1007/s10910-016-0723-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s10910-016-0723-7 | es_ES |
dc.description.upvformatpinicio | 1443 | es_ES |
dc.description.upvformatpfin | 1460 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\324472 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana | es_ES |
dc.description.references | R. Escobedo, L.L. Bonilla, Numerical methods for quantum drift-diffusion equation in semiconductor phisics. Math. Chem. 40(1), 3–13 (2006) | es_ES |
dc.description.references | S.J. Preece, J. Villingham, A.C. King, Chemical clock reactions: the effect of precursor consumtion. Math. Chem. 26, 47–73 (1999) | es_ES |
dc.description.references | H. Montazeri, F. Soleymani, S. Shateyi, S.S. Motsa, On a new method for computing the numerical solution of systems of nonlinear equations. J. Appl. Math. 2012 ID. 751975, 15 pages (2012) | es_ES |
dc.description.references | J.L. Hueso, E. Martínez, C. Teruel, Convergence, effiency and dinamimics of new fourth and sixth order families of iterative methods for nonlinear systems. J. Comput. Appl. Math. 275, 412–420 (2015) | es_ES |
dc.description.references | J.R. Sharma, H. Arora, Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51, 193–210 (2014) | es_ES |
dc.description.references | X. Wang, T. Zhang, W. Qian, M. Teng, Seventh-order derivative-free iterative method for solving nonlinear systems. Numer. Algor. 70, 545–558 (2015) | es_ES |
dc.description.references | J.R. Sharma, H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013) | es_ES |
dc.description.references | A. Cordero, J.G. Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015) | es_ES |
dc.description.references | A.M. Ostrowski, Solution of equations and systems of equations (Prentice-Hall, Englewood Cliffs, New York, 1964) | es_ES |
dc.description.references | C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006) | es_ES |
dc.description.references | A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton-Jarratt’s composition. Numer. Algor. 55, 87–99 (2010) | es_ES |
dc.description.references | J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables (Academic, New York, 1970) | es_ES |
dc.description.references | C. Hermite, Sur la formule dinterpolation de Lagrange. Reine Angew. Math. 84, 70–79 (1878) | es_ES |
dc.description.references | A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) | es_ES |