- -

A family of parametric schemes of arbitrary even order for solving nonlinear models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A family of parametric schemes of arbitrary even order for solving nonlinear models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Vassileva, Maria P. es_ES
dc.date.accessioned 2018-07-16T07:00:44Z
dc.date.available 2018-07-16T07:00:44Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0259-9791 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105866
dc.description.abstract [EN] Many problems related to gas dynamics, heat transfer or chemical reactions are modeled by means of partial differential equations that usually are solved by using approximation techniques. When they are transformed in nonlinear systems of equations via a discretization process, this system is big-sized and high-order iterative methods are specially useful. In this paper, we construct a new family of parametric iterative methods with arbitrary even order, based on the extension of Ostrowski' and Chun's methods for solving nonlinear systems. Some elements of the proposed class are known methods meanwhile others are new schemes with good properties. Some numerical tests confirm the theoretical results and allow us to compare the numerical results obtained by applying new methods and known ones on academical examples. In addition, we apply one of our methods for approximating the solution of a heat conduction problem described by a parabolic partial differential equation. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Mathematical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject System of nonlinear equations es_ES
dc.subject Iterative methods es_ES
dc.subject Order of convergence es_ES
dc.subject Heat conduction problem es_ES
dc.subject Divided differences es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A family of parametric schemes of arbitrary even order for solving nonlinear models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10910-016-0723-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDOCYT//2014-1C1-088/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-08-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). A family of parametric schemes of arbitrary even order for solving nonlinear models. Journal of Mathematical Chemistry. 55(7):1443-1460. https://doi.org/10.1007/s10910-016-0723-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10910-016-0723-7 es_ES
dc.description.upvformatpinicio 1443 es_ES
dc.description.upvformatpfin 1460 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\324472 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES
dc.description.references R. Escobedo, L.L. Bonilla, Numerical methods for quantum drift-diffusion equation in semiconductor phisics. Math. Chem. 40(1), 3–13 (2006) es_ES
dc.description.references S.J. Preece, J. Villingham, A.C. King, Chemical clock reactions: the effect of precursor consumtion. Math. Chem. 26, 47–73 (1999) es_ES
dc.description.references H. Montazeri, F. Soleymani, S. Shateyi, S.S. Motsa, On a new method for computing the numerical solution of systems of nonlinear equations. J. Appl. Math. 2012 ID. 751975, 15 pages (2012) es_ES
dc.description.references J.L. Hueso, E. Martínez, C. Teruel, Convergence, effiency and dinamimics of new fourth and sixth order families of iterative methods for nonlinear systems. J. Comput. Appl. Math. 275, 412–420 (2015) es_ES
dc.description.references J.R. Sharma, H. Arora, Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51, 193–210 (2014) es_ES
dc.description.references X. Wang, T. Zhang, W. Qian, M. Teng, Seventh-order derivative-free iterative method for solving nonlinear systems. Numer. Algor. 70, 545–558 (2015) es_ES
dc.description.references J.R. Sharma, H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013) es_ES
dc.description.references A. Cordero, J.G. Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015) es_ES
dc.description.references A.M. Ostrowski, Solution of equations and systems of equations (Prentice-Hall, Englewood Cliffs, New York, 1964) es_ES
dc.description.references C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006) es_ES
dc.description.references A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton-Jarratt’s composition. Numer. Algor. 55, 87–99 (2010) es_ES
dc.description.references J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables (Academic, New York, 1970) es_ES
dc.description.references C. Hermite, Sur la formule dinterpolation de Lagrange. Reine Angew. Math. 84, 70–79 (1878) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem