Mostrar el registro sencillo del ítem
dc.contributor.author | Ureña Gómez-Moreno, Pedro | es_ES |
dc.date.accessioned | 2018-09-03T12:31:31Z | |
dc.date.available | 2018-09-03T12:31:31Z | |
dc.date.issued | 2018-07-12 | |
dc.identifier.uri | http://hdl.handle.net/10251/106475 | |
dc.description.abstract | [EN] Ontology enrichment is a classification problem in which an algorithm categorizes an input conceptual unit in the corresponding node in a target ontology. Conceptual enrichment is of great importance both to Knowledge Engineering and Natural Language Processing, because it helps maximize the efficacy of intelligent systems, making them more adaptable to scenarios where information is produced by means of language. Following previous research on distributional semantics, this paper presents a case study of ontology enrichment using a feature-extraction method which relies on collocational information from corpora. The major advantage of this method is that it can help locate an input unit within its corresponding superordinate node in a taxonomy using a relatively small number of lexical features. In order to evaluate the proposed framework, this paper presents an experiment consisting of the automatic classification of a chemical substance in a taxonomy of toxicology. | es_ES |
dc.description.sponsorship | This article is based on research carried out within the framework of the Project FFI2014-53788-C3-1-P, which is funded by the Spanish Ministry of Economy and Competitiveness, and entitled: Development of a virtual laboratory for natural language processing from a functional paradigm. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Journal of Computer-Assisted Linguistic Research | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ontology learning | es_ES |
dc.subject | Ontology enrichment | es_ES |
dc.subject | Taxonomy | es_ES |
dc.subject | Corpus linguistics | es_ES |
dc.subject | Co-occurrence | es_ES |
dc.title | Learning IS-A relations from specialized-domain texts with co-occurrence measures | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2018-09-03T12:16:51Z | |
dc.identifier.doi | 10.4995/jclr.2018.9916 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FFI2014-53788-C3-1-P/ES/DESARROLLO DE UN LABORATORIO VIRTUAL PARA EL PROCESAMIENTO COMPUTACIONAL DEL LENGUAJE NATURAL DESDE UN PARADIGMA FUNCIONAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Ureña Gómez-Moreno, P. (2018). Learning IS-A relations from specialized-domain texts with co-occurrence measures. Journal of Computer-Assisted Linguistic Research. 2(1):21-38. https://doi.org/10.4995/jclr.2018.9916 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/jclr.2018.9916 | es_ES |
dc.description.upvformatpinicio | 21 | es_ES |
dc.description.upvformatpfin | 38 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 2530-9455 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Agirre, Eneko, Alfonseca, Enrique, and Oier López de Lacalle. 2004. Approximating Hierarchy-based Similarity for WordNet Nominal Synsets Using Topic Signatures. Proceedings of GWC-04, 2nd global WordNet Conference, edited by Petr Sojka, Karel Pala, Pavel Smrž, Christiane Fellbaum, and Piek Vossen, 15-22. The Global Wordnet Association. | es_ES |
dc.description.references | Alfonseca, Enrique, and Suresh Manandhar. 2002. "Extending a Lexical Ontology by a Combination of Distributional Semantics Signatures." In Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web. EKAW 2002. Lecture Notes in Computer Science, edited by Asunción Gómez-Pérez, and Richard Benjamins, Vol. 2473, 1-7. Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-45810-7_1 | es_ES |
dc.description.references | Anthony, Laurence. 2018. AntCorGen (Version 1.1.1) [Computer Software]. Tokyo, Japan: Waseda University. Available from http://www.antlab.sci.waseda.ac.jp/ | es_ES |
dc.description.references | Biemann, Chris. 2005. "Ontology learning from text: A survey of methods." LDV forum 20(2): 75-93. | es_ES |
dc.description.references | Buitelaar, Paul, and Philipp Cimiano, eds. 2008. Ontology Learning and Population: Bridging the Gap between Text and Knowledge. Amsterdam: IOS Press. | es_ES |
dc.description.references | Cimiano, Philipp. 2006. Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Berlin, Heidelberg: Springer. | es_ES |
dc.description.references | Cimiano Philipp, and Johanna Völker. 2005. "Text2Onto." In Natural Language Processing and Information Systems, edited by Andrés Montoyo, Rafael Muñoz R, and Elisabeth Métais, 227-238. Lecture Notes in Computer Science, vol 3513. Berlin, Heidelberg: Springer. https://doi.org/10.1007/11428817_21 | es_ES |
dc.description.references | Clark, Malcolm, Kim, Yunhyong, Kruschwitz, Udo, Song, Dawei, Albakour, Dyaa, Dignum, Stephen, Cerviño Baresi, Ulises, Fasli, Maria, and Anne De Roeck. 2012. "Automatically Structuring Domain Knowledge from Text: An Overview of Current Research." Information Processing and Management 48(3): 552-568. https://doi.org/10.1016/j.ipm.2011.07.002 | es_ES |
dc.description.references | Cressie, Noel and Timothy R. C. Read. 1989. "Pearson's X2 and the Loglikelihood Ratio Statistic G2: A comparative review." International Statistical Review 57(1): 19-43. https://doi.org/10.2307/1403582 | es_ES |
dc.description.references | De Knijff, Jeroen, Frasincar, Flavius, and Frederik Hogenboom. 2013. "Domain Taxonomy Learning from Text: The Subsumption Method versus Hierarchical Clustering." Data and Knowledge Engineering 83: 54-69. doi: dx.doi.org/10.1016/j.datak.2012.10.002. https://doi.org/10.1016/j.datak.2012.10.002 | es_ES |
dc.description.references | Faatz, Andreas, and Ralf Steinmetz. 2003. "Ontology Enrichment with Texts from the WWW." In Proceedings of the 2nd ECML/PKDD Semantic Web Mining Workshop. | es_ES |
dc.description.references | Faatz, Andreas, and Ralf Steinmetz. 2005. "An Evaluation Framework for Ontology Enrichment." In Ontology Learning from Text: Methods, Applications and Evaluation, edited by Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini, number 123 in Frontiers in Artificial Intelligence and Applications, 77-91. Amsterdam: IOS Press. | es_ES |
dc.description.references | Fano, Roberto Mario. 1961. Transmission of Information: A Statistical Theory of Communications. Cambridge, MA: MIT Press. | es_ES |
dc.description.references | Fotzo, Hermine Njike, and Patrick Gallinari. 2004. "Learning «Generalization/specialization» Relations between Concepts: Application for Automatically Building Thematic Document Hierarchies." In Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval, 143-155. Le Centre de Hautes Études Internationales D'informatique Documentaire. | es_ES |
dc.description.references | Gherasim, Toader, Harzallah, Mounira, Berio, Giuseppe, and Pascale Kuntz. 2013. "Methods and Tools for Automatic Construction of Ontologies from Textual Resources: A Framework for Comparison and its Application." In Advances in Knowledge Discovery and Management, edited by Fabrice Guillet, Bruno Pinaud, and Gilles Venturini, 177-201. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-35855-5_9 | es_ES |
dc.description.references | Gómez-Pérez, Asunción, and David Manzano-Macho. 2004. "An Overview of Methods and Tools for Ontology Learning from Texts." The Knowledge Engineering Review 19(3): 187-212. https://doi.org/10.1017/S0269888905000251 | es_ES |
dc.description.references | Gruber, Thomas. 1995. "Toward Principles for the Design of Ontologies Used for Knowledge Sharing?" International Journal of Human-Computer Studies 43(5-6): 907-928. https://doi.org/10.1006/ijhc.1995.1081 | es_ES |
dc.description.references | Harris, Zellig. 1954. "Distributional Structure." Word 10(2-3): 146-162. https://doi.org/10.1080/00437956.1954.11659520 | es_ES |
dc.description.references | Hazman, Maryam, El-Beltagy, Samhaa, and Ahmed Rafea. 2011. "A Survey of Ontology Learning Approaches." Database 22(8): 36-43. https://doi.org/10.5120/2610-3642 | es_ES |
dc.description.references | Hearst, Marti. 1992. "Automatic Acquisition of Hyponyms from Large Text Corpora." Proceedings of the Fourteenth conference on Computational Linguistics, Vol. 2, 539-545. Association for Computational Linguistics. https://doi.org/10.3115/992133.992154 | es_ES |
dc.description.references | IJntema, Wouter, Sangers, Jordy, Hogenboom, Frederik, and Flavius Frasincar. 2012. "A Lexico-semantic Pattern Language for Learning Ontology Instances from Text." Web Semantics: Science, Services and Agents on the World Wide Web, 15, 37-50. | es_ES |
dc.description.references | Jurafsky, Daniel, and James H. Martin. 2008. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, (2nd Ed.). Pearson/Prentice-Hall. | es_ES |
dc.description.references | Lehmann, Jens, and Johanna Völker, eds. 2014. Perspectives on Ontology Learning. Amsterdam: IOS Press. | es_ES |
dc.description.references | Maedche, Alexander, and Steffen Staab. 2001. "Ontology Learning for the Semantic Web." IEEE Intelligent Systems 16(2): 72-79. https://doi.org/10.1109/5254.920602 | es_ES |
dc.description.references | Meijer, Kevin, Frasincar, Flavius, and Frederik Hogenboom. 2014. "A Semantic Approach for Extracting Domain Taxonomies from Text." Decision Support Systems 62: 78-93. https://doi.org/10.1016/j.dss.2014.03.006 | es_ES |
dc.description.references | Petasis, Georgios, Karkaletsis, Vangelis, Paliouras, Georgios, Krithara, Anastasia, and Elias Zavitsanos. 2011. "Ontology Population and Enrichment: State of the Art." In Knowledge-driven Multimedia Information Extraction and Ontology Evolution, edited by Georgios Paliouras,Constantine Spyropoulos, and George Tsatsaronis, 134-166. Berlin: Springer. https://doi.org/10.1007/978-3-642-20795-2_6 | es_ES |
dc.description.references | Periñán-Pascual, Carlos. 2017. "Bridging the Gap within Text-data Analytics: A Computer Environment for Data Analysis in Linguistic Research." Revista de Lenguas para Fines Específicos23(2): 111-132. | es_ES |
dc.description.references | Periñán-Pascual, Carlos, and Francisco Arcas Túnez. 2010. "The Architecture of FunGramKB", 7th International Conference on Language Resources and Evaluation, Valletta (Malta). Proceedings of the Seventh International Conference on Language Resources and Evaluation, European Language Resources Association (ELRA), 2667-2674. | es_ES |
dc.description.references | Periñán-Pascual, Carlos, and Ricardo Mairal Usón. 2010. "La Gramática de COREL: Un Lenguaje de Representación Conceptual". Onomázein 21, 11-45. | es_ES |
dc.description.references | Princeton University. 2010. "About WordNet." WordNet. Princeton University. | es_ES |
dc.description.references | Shamsfard, Mehrnoush, and Ahmad Abdollahzadeh Barforoush. 2003. "The State of the Art in Ontology Learning: A Framework for Comparison." The Knowledge Engineering Review 18(4): 293-316. https://doi.org/10.1017/S0269888903000687 | es_ES |
dc.description.references | Ureña Gómez-Moreno, Pedro, and Eva Mestre-Mestre. 2017. "Automatic Domain-specific Learning: Towards a Methodology for Ontology Enrichment."Revista de Lenguas para Fines Específicos 23(2):63-85. https://doi.org/10.20420/rlfe.2017.173 | es_ES |
dc.description.references | Velardi, Paola, Faralli, Stefano, and Roberto Navigli. 2013. "Ontolearn Reloaded: A Graph-based Algorithm for Taxonomy Induction." Computational Linguistics 39(3): 665-707. https://doi.org/10.1162/COLI_a_00146 | es_ES |
dc.description.references | Wong, Wilson, Liu, Wei, and Mohammed Bennamoun. 2012. "Ontology Learning from Text: A Look Back and into the Future." ACM Computing Surveys 44(4): 1-36. https://doi.org/10.1145/2333112.2333115 | es_ES |
dc.description.references | Zouaq, Amal, and Roger Nkambou. 2010. "A Survey of Domain Ontology Engineering: Methods and Tools." In Advances in Intelligent Tutoring Systems,edited by Roger Nkambou, Mizoguchi Riichiro, and Jacqueline Bourdeau, 103-119. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978364214363-2 | es_ES |