- -

Learning IS-A relations from specialized-domain texts with co-occurrence measures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Learning IS-A relations from specialized-domain texts with co-occurrence measures

Show simple item record

Files in this item

dc.contributor.author Ureña Gómez-Moreno, Pedro es_ES
dc.date.accessioned 2018-09-03T12:31:31Z
dc.date.available 2018-09-03T12:31:31Z
dc.date.issued 2018-07-12
dc.identifier.uri http://hdl.handle.net/10251/106475
dc.description.abstract [EN] Ontology enrichment is a classification problem in which an algorithm categorizes an input conceptual unit in the corresponding node in a target ontology. Conceptual enrichment is of great importance both to Knowledge Engineering and Natural Language Processing, because it helps maximize the efficacy of intelligent systems, making them more adaptable to scenarios where information is produced by means of language. Following previous research on distributional semantics, this paper presents a case study of ontology enrichment using a feature-extraction method which relies on collocational information from corpora. The major advantage of this method is that it can help locate an input unit within its corresponding superordinate node in a taxonomy using a relatively small number of lexical features. In order to evaluate the proposed framework, this paper presents an experiment consisting of the automatic classification of a chemical substance in a taxonomy of toxicology. es_ES
dc.description.sponsorship This article is based on research carried out within the framework of the Project FFI2014-53788-C3-1-P, which is funded by the Spanish Ministry of Economy and Competitiveness, and entitled: Development of a virtual laboratory for natural language processing from a functional paradigm. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation info:eu-repo/grantAgreement/MINECO//FFI2014-53788-C3-1-P/ES/DESARROLLO DE UN LABORATORIO VIRTUAL PARA EL PROCESAMIENTO COMPUTACIONAL DEL LENGUAJE NATURAL DESDE UN PARADIGMA FUNCIONAL/ es_ES
dc.relation.ispartof Journal of Computer-Assisted Linguistic Research
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ontology learning es_ES
dc.subject Ontology enrichment es_ES
dc.subject Taxonomy es_ES
dc.subject Corpus linguistics es_ES
dc.subject Co-occurrence es_ES
dc.title Learning IS-A relations from specialized-domain texts with co-occurrence measures es_ES
dc.type Artículo es_ES
dc.date.updated 2018-09-03T12:16:51Z
dc.identifier.doi 10.4995/jclr.2018.9916
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ureña Gómez-Moreno, P. (2018). Learning IS-A relations from specialized-domain texts with co-occurrence measures. Journal of Computer-Assisted Linguistic Research. 2(1):21-38. https://doi.org/10.4995/jclr.2018.9916 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/jclr.2018.9916 es_ES
dc.description.upvformatpinicio 21 es_ES
dc.description.upvformatpfin 38 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2
dc.description.issue 1
dc.identifier.eissn 2530-9455
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.relation.references Agirre, Eneko, Alfonseca, Enrique, and Oier López de Lacalle. 2004. Approximating Hierarchy-based Similarity for WordNet Nominal Synsets Using Topic Signatures. Proceedings of GWC-04, 2nd global WordNet Conference, edited by Petr Sojka, Karel Pala, Pavel Smrž, Christiane Fellbaum, and Piek Vossen, 15-22. The Global Wordnet Association. es_ES
dc.relation.references Alfonseca, Enrique, and Suresh Manandhar. 2002. "Extending a Lexical Ontology by a Combination of Distributional Semantics Signatures." In Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web. EKAW 2002. Lecture Notes in Computer Science, edited by Asunción Gómez-Pérez, and Richard Benjamins, Vol. 2473, 1-7. Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-45810-7_1 es_ES
dc.relation.references Anthony, Laurence. 2018. AntCorGen (Version 1.1.1) [Computer Software]. Tokyo, Japan: Waseda University. Available from http://www.antlab.sci.waseda.ac.jp/ es_ES
dc.relation.references Biemann, Chris. 2005. "Ontology learning from text: A survey of methods." LDV forum 20(2): 75-93. es_ES
dc.relation.references Buitelaar, Paul, and Philipp Cimiano, eds. 2008. Ontology Learning and Population: Bridging the Gap between Text and Knowledge. Amsterdam: IOS Press. es_ES
dc.relation.references Cimiano, Philipp. 2006. Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Berlin, Heidelberg: Springer. es_ES
dc.relation.references Cimiano Philipp, and Johanna Völker. 2005. "Text2Onto." In Natural Language Processing and Information Systems, edited by Andrés Montoyo, Rafael Muñoz R, and Elisabeth Métais, 227-238. Lecture Notes in Computer Science, vol 3513. Berlin, Heidelberg: Springer. https://doi.org/10.1007/11428817_21 es_ES
dc.relation.references Clark, Malcolm, Kim, Yunhyong, Kruschwitz, Udo, Song, Dawei, Albakour, Dyaa, Dignum, Stephen, Cerviño Baresi, Ulises, Fasli, Maria, and Anne De Roeck. 2012. "Automatically Structuring Domain Knowledge from Text: An Overview of Current Research." Information Processing and Management 48(3): 552-568. https://doi.org/10.1016/j.ipm.2011.07.002 es_ES
dc.relation.references Cressie, Noel and Timothy R. C. Read. 1989. "Pearson's X2 and the Loglikelihood Ratio Statistic G2: A comparative review." International Statistical Review 57(1): 19-43. https://doi.org/10.2307/1403582 es_ES
dc.relation.references De Knijff, Jeroen, Frasincar, Flavius, and Frederik Hogenboom. 2013. "Domain Taxonomy Learning from Text: The Subsumption Method versus Hierarchical Clustering." Data and Knowledge Engineering 83: 54-69. doi: dx.doi.org/10.1016/j.datak.2012.10.002. https://doi.org/10.1016/j.datak.2012.10.002 es_ES
dc.relation.references Faatz, Andreas, and Ralf Steinmetz. 2003. "Ontology Enrichment with Texts from the WWW." In Proceedings of the 2nd ECML/PKDD Semantic Web Mining Workshop. es_ES
dc.relation.references Faatz, Andreas, and Ralf Steinmetz. 2005. "An Evaluation Framework for Ontology Enrichment." In Ontology Learning from Text: Methods, Applications and Evaluation, edited by Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini, number 123 in Frontiers in Artificial Intelligence and Applications, 77-91. Amsterdam: IOS Press. es_ES
dc.relation.references Fano, Roberto Mario. 1961. Transmission of Information: A Statistical Theory of Communications. Cambridge, MA: MIT Press. es_ES
dc.relation.references Fotzo, Hermine Njike, and Patrick Gallinari. 2004. "Learning «Generalization/specialization» Relations between Concepts: Application for Automatically Building Thematic Document Hierarchies." In Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval, 143-155. Le Centre de Hautes Études Internationales D'informatique Documentaire. es_ES
dc.relation.references Gherasim, Toader, Harzallah, Mounira, Berio, Giuseppe, and Pascale Kuntz. 2013. "Methods and Tools for Automatic Construction of Ontologies from Textual Resources: A Framework for Comparison and its Application." In Advances in Knowledge Discovery and Management, edited by Fabrice Guillet, Bruno Pinaud, and Gilles Venturini, 177-201. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-35855-5_9 es_ES
dc.relation.references Gómez-Pérez, Asunción, and David Manzano-Macho. 2004. "An Overview of Methods and Tools for Ontology Learning from Texts." The Knowledge Engineering Review 19(3): 187-212. https://doi.org/10.1017/S0269888905000251 es_ES
dc.relation.references Gruber, Thomas. 1995. "Toward Principles for the Design of Ontologies Used for Knowledge Sharing?" International Journal of Human-Computer Studies 43(5-6): 907-928. https://doi.org/10.1006/ijhc.1995.1081 es_ES
dc.relation.references Harris, Zellig. 1954. "Distributional Structure." Word 10(2-3): 146-162. https://doi.org/10.1080/00437956.1954.11659520 es_ES
dc.relation.references Hazman, Maryam, El-Beltagy, Samhaa, and Ahmed Rafea. 2011. "A Survey of Ontology Learning Approaches." Database 22(8): 36-43. https://doi.org/10.5120/2610-3642 es_ES
dc.relation.references Hearst, Marti. 1992. "Automatic Acquisition of Hyponyms from Large Text Corpora." Proceedings of the Fourteenth conference on Computational Linguistics, Vol. 2, 539-545. Association for Computational Linguistics. https://doi.org/10.3115/992133.992154 es_ES
dc.relation.references IJntema, Wouter, Sangers, Jordy, Hogenboom, Frederik, and Flavius Frasincar. 2012. "A Lexico-semantic Pattern Language for Learning Ontology Instances from Text." Web Semantics: Science, Services and Agents on the World Wide Web, 15, 37-50. es_ES
dc.relation.references Jurafsky, Daniel, and James H. Martin. 2008. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, (2nd Ed.). Pearson/Prentice-Hall. es_ES
dc.relation.references Lehmann, Jens, and Johanna Völker, eds. 2014. Perspectives on Ontology Learning. Amsterdam: IOS Press. es_ES
dc.relation.references Maedche, Alexander, and Steffen Staab. 2001. "Ontology Learning for the Semantic Web." IEEE Intelligent Systems 16(2): 72-79. https://doi.org/10.1109/5254.920602 es_ES
dc.relation.references Meijer, Kevin, Frasincar, Flavius, and Frederik Hogenboom. 2014. "A Semantic Approach for Extracting Domain Taxonomies from Text." Decision Support Systems 62: 78-93. https://doi.org/10.1016/j.dss.2014.03.006 es_ES
dc.relation.references Petasis, Georgios, Karkaletsis, Vangelis, Paliouras, Georgios, Krithara, Anastasia, and Elias Zavitsanos. 2011. "Ontology Population and Enrichment: State of the Art." In Knowledge-driven Multimedia Information Extraction and Ontology Evolution, edited by Georgios Paliouras,Constantine Spyropoulos, and George Tsatsaronis, 134-166. Berlin: Springer. https://doi.org/10.1007/978-3-642-20795-2_6 es_ES
dc.relation.references Periñán-Pascual, Carlos. 2017. "Bridging the Gap within Text-data Analytics: A Computer Environment for Data Analysis in Linguistic Research." Revista de Lenguas para Fines Específicos23(2): 111-132. es_ES
dc.relation.references Periñán-Pascual, Carlos, and Francisco Arcas Túnez. 2010. "The Architecture of FunGramKB", 7th International Conference on Language Resources and Evaluation, Valletta (Malta). Proceedings of the Seventh International Conference on Language Resources and Evaluation, European Language Resources Association (ELRA), 2667-2674. es_ES
dc.relation.references Periñán-Pascual, Carlos, and Ricardo Mairal Usón. 2010. "La Gramática de COREL: Un Lenguaje de Representación Conceptual". Onomázein 21, 11-45. es_ES
dc.relation.references Princeton University. 2010. "About WordNet." WordNet. Princeton University. es_ES
dc.relation.references Shamsfard, Mehrnoush, and Ahmad Abdollahzadeh Barforoush. 2003. "The State of the Art in Ontology Learning: A Framework for Comparison." The Knowledge Engineering Review 18(4): 293-316. https://doi.org/10.1017/S0269888903000687 es_ES
dc.relation.references Ureña Gómez-Moreno, Pedro, and Eva Mestre-Mestre. 2017. "Automatic Domain-specific Learning: Towards a Methodology for Ontology Enrichment."Revista de Lenguas para Fines Específicos 23(2):63-85. https://doi.org/10.20420/rlfe.2017.173 es_ES
dc.relation.references Velardi, Paola, Faralli, Stefano, and Roberto Navigli. 2013. "Ontolearn Reloaded: A Graph-based Algorithm for Taxonomy Induction." Computational Linguistics 39(3): 665-707. https://doi.org/10.1162/COLI_a_00146 es_ES
dc.relation.references Wong, Wilson, Liu, Wei, and Mohammed Bennamoun. 2012. "Ontology Learning from Text: A Look Back and into the Future." ACM Computing Surveys 44(4): 1-36. https://doi.org/10.1145/2333112.2333115 es_ES
dc.relation.references Zouaq, Amal, and Roger Nkambou. 2010. "A Survey of Domain Ontology Engineering: Methods and Tools." In Advances in Intelligent Tutoring Systems,edited by Roger Nkambou, Mizoguchi Riichiro, and Jacqueline Bourdeau, 103-119. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978364214363-2 es_ES


This item appears in the following Collection(s)

Show simple item record