- -

Desarrollo de un algoritmo de asignación de riesgo de desarrollo de cardiopatías en pacientes diabéticos en base a su ruta clínica.

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Desarrollo de un algoritmo de asignación de riesgo de desarrollo de cardiopatías en pacientes diabéticos en base a su ruta clínica.

Show simple item record

Files in this item

dc.contributor.advisor García Gómez, Juan Miguel es_ES
dc.contributor.advisor Tortajada Velert, Salvador es_ES
dc.contributor.author Carrasco Ribelles, Lucía Amalia es_ES
dc.date.accessioned 2018-09-04T13:19:17Z
dc.date.available 2018-09-04T13:19:17Z
dc.date.created 2018-06-25
dc.date.issued 2018-09-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/106554
dc.description.abstract [ES] Introducción: La diabetes es un trastorno metabólico que afecta a más del 10% de la población española, cifra que aumenta cada año. Estos pacientes pueden desarrollar muchas complicaciones y la prevención es crucial para evitar comorbilidades. En este trabajo se desarrolla un algoritmo de programación dinámica que predice el riesgo de que un diabético desarrolle una cardiopatía en base a su historia clínica. Materiales: Se dispone de una base de datos de pacientes diabéticos del Hospital La Fe de Valencia de los años 2012 a 2015 con 9670 pacientes. Metodología: Como base del algoritmo se utilizará el Smith-Waterman, utilizado habitualmente para encontrar alineamientos locales en secuencias genéticas. Para ello, se hace una definición formal de ruta clínica que permite que la historia clínica pueda ser analizada por el algoritmo. En la misma se incluyen eventos de diagnóstico, consultas externas y resultados de laboratorio. Tras una revisión bibliográfica se exponen qué parámetros clínicos son de interés a la hora de predecir cardiopatías en pacientes diabéticos. Se realiza una adaptación del algoritmo Smith-Waterman para tenerlos en cuenta y para encontrar similitudes locales entre las historias de dos pacientes, de forma que, si la ruta clínica de un nuevo paciente se parece mucho a la de un paciente que desarrolló una cardiopatía, se etiqueta al nuevo como en riesgo de desarrollarla también. Se evalúa la importancia de cada uno de los parámetros con diferentes experimentos, así como el método de imputación de riesgo más apropiado. Para ello se divide la base de datos en validación y test y se da el recall, la precisión y la especificidad. Resultados: Se obtiene una lista de parámetros útiles a la hora de predecir cardiopatías en diabéticos, como el tiempo entre eventos, los diagnósticos de cardiologías y la coincidencia del código CIE-9. También un método de imputación que consigue que el algoritmo prediga la aparición de la enfermedad con una precisión, una especificidad y un recall de 0.8, dándole al paciente la condición clínica que predomine entre los 5 individuos a los que más se parezca. es_ES
dc.description.abstract [VL] Introducció: La diabetis és un trastorn metabòlic que afecta més del 10% de la població espanyola, xifra que augmenta cada any. Aquests pacients poden desenvolupar moltes complicacions i la prevenció és crucial per evitar comorbiditats. En aquest treball es desenvolupa un algoritme de programació dinàmica que prediu el risc de que un diabètic desenvolupe una cardiopatia en base a la seua història clínica. Com a base de l'algoritme s'utilitzarà el Smith-Waterman, utilitzat habitualment per trobar alineaments locals en seqüències genètiques. Materials: Es disposa d'una base de dades de pacients diabètics de l'Hospital La Fe de València dels anys 2012 a 2015 amb 9670 pacients. Metodologia: Com a base de l'algoritme s'utilitzarà el Smith-Waterman, utilitzat habitualment per trobar alineaments locals en seqüències genètiques. Per a això, es fa una definició formal de ruta clínica que permet que la història clínica puga ser analitzada per l'algoritme. En la mateixa s'inclouen esdeveniments de diagnòstic, consultes externes i resultats de laboratori. Després d'una revisió bibliogràfica s'exposen quins paràmetres clínics són d'interès a l'hora de predir cardiopaties en pacients diabètics. Es realitza una adaptació de l'algorisme SmithWaterman per tindre’ls en compte i per trobar similituds locals entre les històries de dos pacients, de manera que si la ruta clínica d'un nou pacient s'assembla molt a la d'un pacient que va desenvolupar una cardiopatia, es etiqueta al nou com en risc de desenvolupar-la també. S'estudia la importància de cada un dels paràmetres amb diferents experiments, així com el mètode d'imputació de risc més apropiat. Per a això es divideix la base de dades en validació i test i es dóna el recall, la precisió i l'especificitat. Resultats: S'obté una llista de paràmetres útils a l'hora de predir cardiopaties en diabètics, com el temps entre esdeveniments, els diagnòstics de cardiologías i la coincidència del codi CIM-9. També un mètode d'imputació que aconsegueix que l'algoritme prediga l'aparició de la malaltia amb una precisió, una especificitat i un recall de 0.8, donant-li al pacient la condició clínica que predomine entre els 5 individus als que més s'assemble. es_ES
dc.description.abstract [EN] Introduction: Diabetes is a metabolic disorder that affects more than 10% of the Spanish population, percentage that increases every year. These patients can develop many complications and prevention is crucial to avoid comorbidities. In this work, a dynamic programming algorithm that predicts the risk that a diabetic will develop a heart disease based on their clinical history is developed. The Smith-Waterman, commonly used to find local alignments in genetic sequences, will be used as the basis of the algorithm. Materials: A database of diabetic patients of the La Fe Hospital in Valencia from 2012 to 2015 with 9670 patients. Methodology: The basis of the algorithm will be the Smith-Waterman, commonly used to find local alignments in genetic sequences. To do this, a formal definition of clinical pathway is made. This allows the clinical history to be analyzed by the algorithm. It includes diagnostic events, external consultations and laboratory results. After a review of the literature, the clinical parameters that are of interest when predicting heart disease in diabetic patients are exposed. An adaptation of the Smith-Waterman algorithm is done to take them into account and to find local similarities between the histories of two patients, so if the clinical pathway of a new patient closely resembles to the one from a patient who developed heart disease, the new patient is labelled as in risk of developing it too. The importance of each of the parameters with different experiments is studied, as well as the most appropriate method of risk imputation. To do this, the database is divided into validation and testing and recall, precision and specificity are given. Results: A list of useful parameters when predicting cardiopathies in diabetics is obtained, such as the time between events, the diagnosis of cardiology and the coincidence of the ICD-9 code. Also, a method of imputation that achieves the algorithm predicts the appearance of the disease with a precision, a specificity and a recall of 0.8, giving the patient the clinical condition that predominates among the 5 individuals to which it most resembles. es_ES
dc.language Español es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject rutas clínicas es_ES
dc.subject programación dinámica es_ES
dc.subject factores predictivos es_ES
dc.subject clinical pathways es_ES
dc.subject diabetes es_ES
dc.subject dynamic programming es_ES
dc.subject predictive factors es_ES
dc.subject Rutes clíniques es_ES
dc.subject diabetis es_ES
dc.subject cardiopatia es_ES
dc.subject programació dinàmica es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.other Grado en Ingeniería Biomédica-Grau en Enginyeria Biomèdica es_ES
dc.title Desarrollo de un algoritmo de asignación de riesgo de desarrollo de cardiopatías en pacientes diabéticos en base a su ruta clínica. es_ES
dc.type Proyecto/Trabajo fin de carrera/grado es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Carrasco Ribelles, LA. (2018). Desarrollo de un algoritmo de asignación de riesgo de desarrollo de cardiopatías en pacientes diabéticos en base a su ruta clínica. http://hdl.handle.net/10251/106554 es_ES
dc.description.accrualMethod TFGM es_ES
dc.relation.pasarela 83954 es_ES


This item appears in the following Collection(s)

Show simple item record