Mostrar el registro sencillo del ítem
dc.contributor.author | Orozco, I. | es_ES |
dc.contributor.author | Ramírez, A. I. | es_ES |
dc.contributor.author | Francés, F. | es_ES |
dc.date.accessioned | 2018-09-10T10:04:53Z | |
dc.date.available | 2018-09-10T10:04:53Z | |
dc.date.issued | 2018-07-30 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/106878 | |
dc.description.abstract | [EN] Assessing the effects of climate change in high mountain basins is one of the main objectives in the planning and prevention of risk situations such as floods. However, it is not easy to predict with adequate precision the impacts on the main flows and storages that intervene in the system. Therefore, the objective of this study is to implement the TETIS hydrological model and use it as a prediction tool to assess the impacts of climate change on a cellular scale in a basin. The TETIS model is automatically calibrated using the Shuffled Complex Evolution optimization algorithm. In future projections of the precipitation and temperature variables used by the TETIS model, the climate multi-model of the Coupled Model Intercomparison Project and the scenarios of the Intergovernmental Panel on Climate Change have been used. The results obtained have shown that there is a modification in the dynamics of the system presenting a greater risk for extraordinary maximum avenues and floods. | es_ES |
dc.description.abstract | [ES] La evaluación de los impactos del Cambio Climático en un sistema de alta montaña es un objetivo primordial en la planificación y prevención de situaciones de riesgo como son las crecidas y las inundaciones. Sin embargo, evaluar con exactitud los impactos en los principales flujos y almacenamientos que intervienen en dicho sistema no es una tarea sencilla. Por lo cual, el objetivo de este estudio ha sido implementar el modelo hidrológico TETIS como herramienta de análisis en la evaluación de los impactos del Cambio Climático a escala de celda en una cuenca. Este modelo se ha calibrado automáticamente empleando el algoritmo de optimización Shuffled Complex Evolution. En las proyecciones futuras de las variables de precipitación y temperatura usadas por el modelo TETIS, se han usado los multimodelos climáticos del Coupled Model Intercomparison Project y los escenarios del Panel Intergubernamental del Cambio Climático. Los resultados obtenidos han mostrado que existe una modificación en la dinámica del sistema presentando un mayor riesgo por avenidas máximas extraordinarias e inundaciones. | es_ES |
dc.description.sponsorship | Esta investigación ha sido apoyada por la Dirección General de Educación Superior Universitaria (DGESU) de la Secretaría de Educación Pública de México (a través de su Programa para el Desarrollo Profesional Docente FOLIO PRODEP: UGTO-PTC 613) y por la División de Ingenierías de la Universidad de Guanajuato, México. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Ingeniería del Agua | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | TETIS | es_ES |
dc.subject | CMIP5 | es_ES |
dc.subject | Escenarios climáticos | es_ES |
dc.subject | Crecidas extraordinarias | es_ES |
dc.subject | Inundaciones | es_ES |
dc.subject | Climate scenarios | es_ES |
dc.subject | Torrential avenues | es_ES |
dc.subject | Floods | es_ES |
dc.title | Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña | es_ES |
dc.title.alternative | Modeling of the impacts of climate change on flows and storage in a high mountain basin | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2018-09-10T09:45:29Z | |
dc.identifier.doi | 10.4995/ia.2018.8931 | |
dc.relation.projectID | info:eu-repo/grantAgreement/DGESU//PRODEP-UGTO-PTC 613/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Orozco, I.; Ramírez, AI.; Francés, F. (2018). Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña. Ingeniería del Agua. 22(3):125-139. https://doi.org/10.4995/ia.2018.8931 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2018.8931 | es_ES |
dc.description.upvformatpinicio | 125 | es_ES |
dc.description.upvformatpfin | 139 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | |
dc.description.issue | 3 | |
dc.identifier.eissn | 1886-4996 | |
dc.contributor.funder | Dirección General de Educación Superior Tecnológica, México | |
dc.contributor.funder | Dirección General de Educación Superior Universitaria, México | es_ES |
dc.contributor.funder | Universidad de Guanajuato | |
dc.description.references | Adam, J. C., Hamlet, A. F., Lettenmaier, D. P. 2009. Implications of global climate change for snowmelt hydrology in the twentyfirst century. Hydrological Processes, 23(7), 962-972. https://doi.org/10.1002/hyp.7201 | es_ES |
dc.description.references | Arnell, N. W., Gosling, S. N. 2013. The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351-364. https://doi.org/10.1016/j.jhydrol.2013.02.010 | es_ES |
dc.description.references | Arnell, N. W., Reynard, N. S. 1996. The effects of climate change due to global warming on river flows in Great Britain. Journal of Hydrology, 183(3-4), 397-424. https://doi.org/10.1016/0022-1694(95)02950-8 | es_ES |
dc.description.references | Beven, K. 1989. Changing ideas in hydrology-The case of physically-based models. Journal of Hydrology, 105(1), 157-172. https://doi.org/10.1016/0022-1694(89)90101-7 | es_ES |
dc.description.references | Bobba, A. G. Singh, V. P., Jeffries, D. S., Bengtsson, L. 1997. Application of a watershed runoff model to north-east pond river, Newfoundland: To study water balance and hydrological characteristics owing to atmospheric change. Hydrological Processes, 11(12), 1573-1593. https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12%3C1573::AID-HYP491%3E3.0.CO;2-V | es_ES |
dc.description.references | Bonilla-Ovallos, C. A., Mesa, O. 2017. Validación de la precipitación estimada por modelos climáticos acoplados del proyecto de intercomparación CMIP5 en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(158), 107. https://doi.org/10.18257/raccefyn.427 | es_ES |
dc.description.references | Burlando, P., Rosso, R. 2002a. Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy. Hydrological Processes, 16(6), 1151-1175. https://doi.org/10.1002/hyp.1055 | es_ES |
dc.description.references | Burlando, P., Rosso, R. 2002b. Effects of transient climate change on basin hydrology. 2. Impacts on runoff variability in the Arno River, central Italy. Hydrological Processes, 16(6), 1177-1199. https://doi.org/10.1002/hyp.1056 | es_ES |
dc.description.references | Devia, G. K., Ganasri, B. P., Dwarakish, G. S. 2015. A Review on Hydrological Models. Aquatic Procedia, 4, 1001-1007. https://doi.org/10.1016/j.aqpro.2015.02.126 | es_ES |
dc.description.references | Döll, P., Schmied, H. M. 2012. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters, 7(1), p. 14037. https://doi.org/10.1088/1748-9326/7/1/014037 | es_ES |
dc.description.references | Döll, P., Zhang, J. 2010. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrology and Earth System Sciences, 14(5), 783-799. https://doi.org/10.5194/hess-14-783-2010 | es_ES |
dc.description.references | Déqué M, Dreveton C, Braun A, Cariolle D. 1994. The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Climate Dynamics, 10, 249-266. https://doi.org/10.1007/BF00208992 | es_ES |
dc.description.references | Duan, Q., Sorooshian, S., Gupta, V. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015-1031. https://doi.org/10.1029/91WR02985 | es_ES |
dc.description.references | Dvorak, V., Hladny, J., Kasparek, L. 1997. Climate change hydrology and water resources impact and adaptation for selected river basins in the czech republic. Climatic Change, 36(1), 93-106. https://doi.org/10.1023/A:1005384120954 | es_ES |
dc.description.references | Eckhardt, K., Haverkamp, S., Fohrer, N., Frede, H.G. 2002. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 641-644. https://doi.org/10.1016/S1474-7065(02)00048-7 | es_ES |
dc.description.references | Francés, F., Vélez, J. I., Vélez, J. J. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1), 226-240. https://doi.org/10.1016/j.jhydrol.2006.06.032 | es_ES |
dc.description.references | Fung, F., Lopez, A., New, M. 2010. Water availability in +2°C and +4°C worlds. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 369(1934), 99-116. https://doi.org/10.1098/rsta.2010.0293 | es_ES |
dc.description.references | Giorgi, F., Mearns, L. O. 1991. Approaches to the simulation of regional climate change: A review. Reviews of Geophysics. 29(2), 191-216. https://doi.org/10.1029/90RG02636 | es_ES |
dc.description.references | Giorgetta, M.A., Jungclaus, J., Reick C.H., Legutke, S., Bader J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K.D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.H., Claussen, M., Marotzke, J., Stevens, B. 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst., 5, 572-597. https://doi.org/10.1002/jame.20038 | es_ES |
dc.description.references | Jeton, A. E., Dettinger, M. D., Smith, J. L. 1996. Potential effects of climate change on streamflow, Eastern and Western slopes of the Sierra Nevada, California and Nevada. Water-Resources Investigations Report, U.S. Geological Survey, p. 44. | es_ES |
dc.description.references | Jiang, T., Chen, Y.D., Xu, C., Chen, X., Chen, X., Singh, V.P. 2007. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. Journal of Hydrology, 336(3), 316-333. https://doi.org/10.1016/j.jhydrol.2007.01.010 | es_ES |
dc.description.references | Kalin, L., Govindaraju, R. S., Hantush, M.M. 2003. Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds. Journal of Hydrology, 276(1-4), 89-111. https://doi.org/10.1016/S0022-1694(03)00072-6 | es_ES |
dc.description.references | Lettenmaier, D. P., Gan, T. Y. 1990. Hydrologic sensitivities of the Sacramento-San Joaquin River Basin, California, to global warming. Water Resources Research, 26(1), 69-86. https://doi.org/10.1029/WR026i001p00069 | es_ES |
dc.description.references | Loukas, A., Quick, M.C. 1996. Effect of Climate Change on Hydrologic Regime of Two Climatically Different Watersheds. Journal of Hydrologic Engineering, 1(2), 77-87. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(77) | es_ES |
dc.description.references | Mearns, L. O. Carbone, G., Doherty, R.M., Tsvetsinskaya, E., McCarl, B.A., Adams, R.M., McDaniel, L. 2004. The Uncertainty due to Spatial Scale of Climate Scenarios in Integrated Assessments: An Example from U.S. Agriculture. Integrated Assessment, 4(4), 225-235. https://doi.org/10.1080/1389517049051537 | es_ES |
dc.description.references | Merz, R., Blöschl, G. 2004. Regionalisation of catchment model parameters. Journal of Hydrology, 287(1-4), 95-123. https://doi.org/10.1016/j.jhydrol.2003.09.028 | es_ES |
dc.description.references | Mimikou, M. A., Kouvopoulos, Y. S. 1991. Regional climate change impacts: I. Impacts on water resources. Hydrological Sciences Journal, 36(3), 247-258. https://doi.org/10.1080/02626669109492507 | es_ES |
dc.description.references | Moradkhani, H., Sorooshian, S. 2008. General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis, in Sorooshian, S. et al. (eds) Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models. Berlin, Heidelberg: Springer Berlin Heidelberg, 1-24. https://doi.org/10.1007/978-3-540-77843-1_1 | es_ES |
dc.description.references | Moreda, F., Cong, S., Schaake, J., Smith, M., 2006. Gridded rainfall estimation for distributed modeling in western mountainous areas. AGU Spring Meeting Abstracts 23, 32. | es_ES |
dc.description.references | Nash, J. E. 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10, 282-290. https://doi.org/10.1016/0022-1694(70)90255-6 | es_ES |
dc.description.references | Nash, L. L., Gleick, P. H. 1991. Sensitivity of streamflow in the Colorado Basin to climatic changes. Journal of Hydrology, 125(3-4), 221-241. https://doi.org/10.1016/0022-1694(91)90030-L | es_ES |
dc.description.references | Neelin, J. D., Langenbrunner, B., Meyerson, J. E., Hall, A., Berg, N. 2013. California Winter Precipitation Change under Global Warming in the Coupled Model Intercomparison Project Phase 5 Ensemble. Journal of Climate, 26, 6238-6256. https://doi.org/10.1175/JCLI-D-12-00514.1 | es_ES |
dc.description.references | Orozco, I. 2014 Modelación parsimoniosa y espacialmente distribuida de los procesos de acumulación y fusión de nieve. Tesis doctoral. Universidad Politécnica de Valencia (UPV). 1-290. http://doi.org/10.4995/Thesis/10251/36035 | es_ES |
dc.description.references | Peña, E., Barrios, M., Francés, F., 2016. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale, Journal of Hydrology, 541, 1258-1272. https://doi.org/10.1016/j.jhydrol.2016.08.031 | es_ES |
dc.description.references | Ruiz-Villanueva, V. Stoffel, M., Bussi, G., Francés, F., Bréthaut, C. 2014. Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications. Regional Environmental Change, 15(3), 505-515. https://doi.org/10.1007/s10113-014-0707-8 | es_ES |
dc.description.references | Scholze, M. Knorr, W., Arnell, N.W., Prentice, I.C. 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences, 103(35), 13116-13120. https://doi.org/10.1073/pnas.0601816103 | es_ES |
dc.description.references | Smith, M. Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B., Mizukami, N., Kitzmiller, D., Ding, F., Reed, S., Anderson, E., Schaake, J., Zhang, Y., Andréassian, V., Perrin, C., Coron, L., Valéry, A., Khakbaz, B., Sorooshian, S., Behrangi, A., Imam, B., Hsu, K.L., Todini, E.,Coccia, G., Mazzetti, C., Ortiz A.E., Francés, F.,Orozco, I., Hartman, R., Henkel, A., Fickenscher, P., Staggs, S. 2013. The distributed model intercomparison project - Phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology. Elsevier B.V., 507, 300-329. https://doi.org/10.1016/j.jhydrol.2013.08.040 | es_ES |
dc.description.references | Stocker, T.F., Dahe, Q., Gian-Kasper, P., Melinda, M.B., Tignor, S.K. Allen, J.B., Alexander, N., Yu X., Vincent B., Pauline M.M. 2013. Cambio climático 2013-Bases físicas. Quinto Inf. Edited by 2013 Grupo Intergubernamental de Expertos sobre el Cambio Climático. 1-34. | es_ES |
dc.description.references | Taylor, K. E., Stouffer, R. J., Meehl, G. A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498. https://doi.org/10.1175/BAMS-D-11-00094.1 | es_ES |
dc.description.references | Trouet, V., Oldenborgh, G.J.V. 2013. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Research, 69 (1), 3-13. https://doi.org/10.3959/1536-1098-69.1.3 | es_ES |
dc.description.references | Wilby, R. L. Hay, L.E., Gutowski, W.J., Arritt, R.W., Takle, E.S., Pan, Z., Leavesley, G.H., Clark, M.P. 2000. Hydrological responses to dynamically and statistically downscaled climate model output. Geophysical Research Letters, 27(8), 1199-1202. https://doi.org/10.1029/1999GL006078 | es_ES |