- -

Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Orozco, I. es_ES
dc.contributor.author Ramírez, A. I. es_ES
dc.contributor.author Francés, F. es_ES
dc.date.accessioned 2018-09-10T10:04:53Z
dc.date.available 2018-09-10T10:04:53Z
dc.date.issued 2018-07-30
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/106878
dc.description.abstract [EN] Assessing the effects of climate change in high mountain basins is one of the main objectives in the planning and prevention of risk situations such as floods. However, it is not easy to predict with adequate precision the impacts on the main flows and storages that intervene in the system. Therefore, the objective of this study is to implement the TETIS hydrological model and use it as a prediction tool to assess the impacts of climate change on a cellular scale in a basin. The TETIS model is automatically calibrated using the Shuffled Complex Evolution optimization algorithm. In future projections of the precipitation and temperature variables used by the TETIS model, the climate multi-model of the Coupled Model Intercomparison Project and the scenarios of the Intergovernmental Panel on Climate Change have been used. The results obtained have shown that there is a modification in the dynamics of the system presenting a greater risk for extraordinary maximum avenues and floods. es_ES
dc.description.abstract [ES] La evaluación de los impactos del Cambio Climático en un sistema de alta montaña es un objetivo primordial en la planificación y prevención de situaciones de riesgo como son las crecidas y las inundaciones. Sin embargo, evaluar con exactitud los impactos en los principales flujos y almacenamientos que intervienen en dicho sistema no es una tarea sencilla. Por lo cual, el objetivo de este estudio ha sido implementar el modelo hidrológico TETIS como herramienta de análisis en la evaluación de los impactos del Cambio Climático a escala de celda en una cuenca. Este modelo se ha calibrado automáticamente empleando el algoritmo de optimización Shuffled Complex Evolution. En las proyecciones futuras de las variables de precipitación y temperatura usadas por el modelo TETIS, se han usado los multimodelos climáticos del Coupled Model Intercomparison Project y los escenarios del Panel Intergubernamental del Cambio Climático. Los resultados obtenidos han mostrado que existe una modificación en la dinámica del sistema presentando un mayor riesgo por avenidas máximas extraordinarias e inundaciones. es_ES
dc.description.sponsorship Esta investigación ha sido apoyada por la Dirección General de Educación Superior Universitaria (DGESU) de la Secretaría de Educación Pública de México (a través de su Programa para el Desarrollo Profesional Docente FOLIO PRODEP: UGTO-PTC 613) y por la División de Ingenierías de la Universidad de Guanajuato, México. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Ingeniería del Agua
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject TETIS es_ES
dc.subject CMIP5 es_ES
dc.subject Escenarios climáticos es_ES
dc.subject Crecidas extraordinarias es_ES
dc.subject Inundaciones es_ES
dc.subject Climate scenarios es_ES
dc.subject Torrential avenues es_ES
dc.subject Floods es_ES
dc.title Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña es_ES
dc.title.alternative Modeling of the impacts of climate change on flows and storage in a high mountain basin es_ES
dc.type Artículo es_ES
dc.date.updated 2018-09-10T09:45:29Z
dc.identifier.doi 10.4995/ia.2018.8931
dc.relation.projectID info:eu-repo/grantAgreement/DGESU//PRODEP-UGTO-PTC 613/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Orozco, I.; Ramírez, AI.; Francés, F. (2018). Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña. Ingeniería del Agua. 22(3):125-139. https://doi.org/10.4995/ia.2018.8931 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2018.8931 es_ES
dc.description.upvformatpinicio 125 es_ES
dc.description.upvformatpfin 139 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22
dc.description.issue 3
dc.identifier.eissn 1886-4996
dc.contributor.funder Dirección General de Educación Superior Tecnológica, México
dc.contributor.funder Dirección General de Educación Superior Universitaria, México es_ES
dc.contributor.funder Universidad de Guanajuato
dc.description.references Adam, J. C., Hamlet, A. F., Lettenmaier, D. P. 2009. Implications of global climate change for snowmelt hydrology in the twentyfirst century. Hydrological Processes, 23(7), 962-972. https://doi.org/10.1002/hyp.7201 es_ES
dc.description.references Arnell, N. W., Gosling, S. N. 2013. The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351-364. https://doi.org/10.1016/j.jhydrol.2013.02.010 es_ES
dc.description.references Arnell, N. W., Reynard, N. S. 1996. The effects of climate change due to global warming on river flows in Great Britain. Journal of Hydrology, 183(3-4), 397-424. https://doi.org/10.1016/0022-1694(95)02950-8 es_ES
dc.description.references Beven, K. 1989. Changing ideas in hydrology-The case of physically-based models. Journal of Hydrology, 105(1), 157-172. https://doi.org/10.1016/0022-1694(89)90101-7 es_ES
dc.description.references Bobba, A. G. Singh, V. P., Jeffries, D. S., Bengtsson, L. 1997. Application of a watershed runoff model to north-east pond river, Newfoundland: To study water balance and hydrological characteristics owing to atmospheric change. Hydrological Processes, 11(12), 1573-1593. https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12%3C1573::AID-HYP491%3E3.0.CO;2-V es_ES
dc.description.references Bonilla-Ovallos, C. A., Mesa, O. 2017. Validación de la precipitación estimada por modelos climáticos acoplados del proyecto de intercomparación CMIP5 en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(158), 107. https://doi.org/10.18257/raccefyn.427 es_ES
dc.description.references Burlando, P., Rosso, R. 2002a. Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy. Hydrological Processes, 16(6), 1151-1175. https://doi.org/10.1002/hyp.1055 es_ES
dc.description.references Burlando, P., Rosso, R. 2002b. Effects of transient climate change on basin hydrology. 2. Impacts on runoff variability in the Arno River, central Italy. Hydrological Processes, 16(6), 1177-1199. https://doi.org/10.1002/hyp.1056 es_ES
dc.description.references Devia, G. K., Ganasri, B. P., Dwarakish, G. S. 2015. A Review on Hydrological Models. Aquatic Procedia, 4, 1001-1007. https://doi.org/10.1016/j.aqpro.2015.02.126 es_ES
dc.description.references Döll, P., Schmied, H. M. 2012. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters, 7(1), p. 14037. https://doi.org/10.1088/1748-9326/7/1/014037 es_ES
dc.description.references Döll, P., Zhang, J. 2010. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrology and Earth System Sciences, 14(5), 783-799. https://doi.org/10.5194/hess-14-783-2010 es_ES
dc.description.references Déqué M, Dreveton C, Braun A, Cariolle D. 1994. The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Climate Dynamics, 10, 249-266. https://doi.org/10.1007/BF00208992 es_ES
dc.description.references Duan, Q., Sorooshian, S., Gupta, V. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015-1031. https://doi.org/10.1029/91WR02985 es_ES
dc.description.references Dvorak, V., Hladny, J., Kasparek, L. 1997. Climate change hydrology and water resources impact and adaptation for selected river basins in the czech republic. Climatic Change, 36(1), 93-106. https://doi.org/10.1023/A:1005384120954 es_ES
dc.description.references Eckhardt, K., Haverkamp, S., Fohrer, N., Frede, H.G. 2002. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 641-644. https://doi.org/10.1016/S1474-7065(02)00048-7 es_ES
dc.description.references Francés, F., Vélez, J. I., Vélez, J. J. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1), 226-240. https://doi.org/10.1016/j.jhydrol.2006.06.032 es_ES
dc.description.references Fung, F., Lopez, A., New, M. 2010. Water availability in +2°C and +4°C worlds. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 369(1934), 99-116. https://doi.org/10.1098/rsta.2010.0293 es_ES
dc.description.references Giorgi, F., Mearns, L. O. 1991. Approaches to the simulation of regional climate change: A review. Reviews of Geophysics. 29(2), 191-216. https://doi.org/10.1029/90RG02636 es_ES
dc.description.references Giorgetta, M.A., Jungclaus, J., Reick C.H., Legutke, S., Bader J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K.D., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.H., Claussen, M., Marotzke, J., Stevens, B. 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst., 5, 572-597. https://doi.org/10.1002/jame.20038 es_ES
dc.description.references Jeton, A. E., Dettinger, M. D., Smith, J. L. 1996. Potential effects of climate change on streamflow, Eastern and Western slopes of the Sierra Nevada, California and Nevada. Water-Resources Investigations Report, U.S. Geological Survey, p. 44. es_ES
dc.description.references Jiang, T., Chen, Y.D., Xu, C., Chen, X., Chen, X., Singh, V.P. 2007. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. Journal of Hydrology, 336(3), 316-333. https://doi.org/10.1016/j.jhydrol.2007.01.010 es_ES
dc.description.references Kalin, L., Govindaraju, R. S., Hantush, M.M. 2003. Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds. Journal of Hydrology, 276(1-4), 89-111. https://doi.org/10.1016/S0022-1694(03)00072-6 es_ES
dc.description.references Lettenmaier, D. P., Gan, T. Y. 1990. Hydrologic sensitivities of the Sacramento-San Joaquin River Basin, California, to global warming. Water Resources Research, 26(1), 69-86. https://doi.org/10.1029/WR026i001p00069 es_ES
dc.description.references Loukas, A., Quick, M.C. 1996. Effect of Climate Change on Hydrologic Regime of Two Climatically Different Watersheds. Journal of Hydrologic Engineering, 1(2), 77-87. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(77) es_ES
dc.description.references Mearns, L. O. Carbone, G., Doherty, R.M., Tsvetsinskaya, E., McCarl, B.A., Adams, R.M., McDaniel, L. 2004. The Uncertainty due to Spatial Scale of Climate Scenarios in Integrated Assessments: An Example from U.S. Agriculture. Integrated Assessment, 4(4), 225-235. https://doi.org/10.1080/1389517049051537 es_ES
dc.description.references Merz, R., Blöschl, G. 2004. Regionalisation of catchment model parameters. Journal of Hydrology, 287(1-4), 95-123. https://doi.org/10.1016/j.jhydrol.2003.09.028 es_ES
dc.description.references Mimikou, M. A., Kouvopoulos, Y. S. 1991. Regional climate change impacts: I. Impacts on water resources. Hydrological Sciences Journal, 36(3), 247-258. https://doi.org/10.1080/02626669109492507 es_ES
dc.description.references Moradkhani, H., Sorooshian, S. 2008. General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis, in Sorooshian, S. et al. (eds) Hydrological Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models. Berlin, Heidelberg: Springer Berlin Heidelberg, 1-24. https://doi.org/10.1007/978-3-540-77843-1_1 es_ES
dc.description.references Moreda, F., Cong, S., Schaake, J., Smith, M., 2006. Gridded rainfall estimation for distributed modeling in western mountainous areas. AGU Spring Meeting Abstracts 23, 32. es_ES
dc.description.references Nash, J. E. 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10, 282-290. https://doi.org/10.1016/0022-1694(70)90255-6 es_ES
dc.description.references Nash, L. L., Gleick, P. H. 1991. Sensitivity of streamflow in the Colorado Basin to climatic changes. Journal of Hydrology, 125(3-4), 221-241. https://doi.org/10.1016/0022-1694(91)90030-L es_ES
dc.description.references Neelin, J. D., Langenbrunner, B., Meyerson, J. E., Hall, A., Berg, N. 2013. California Winter Precipitation Change under Global Warming in the Coupled Model Intercomparison Project Phase 5 Ensemble. Journal of Climate, 26, 6238-6256. https://doi.org/10.1175/JCLI-D-12-00514.1 es_ES
dc.description.references Orozco, I. 2014 Modelación parsimoniosa y espacialmente distribuida de los procesos de acumulación y fusión de nieve. Tesis doctoral. Universidad Politécnica de Valencia (UPV). 1-290. http://doi.org/10.4995/Thesis/10251/36035 es_ES
dc.description.references Peña, E., Barrios, M., Francés, F., 2016. Flood quantiles scaling with upper soil hydraulic properties for different land uses at catchment scale, Journal of Hydrology, 541, 1258-1272. https://doi.org/10.1016/j.jhydrol.2016.08.031 es_ES
dc.description.references Ruiz-Villanueva, V. Stoffel, M., Bussi, G., Francés, F., Bréthaut, C. 2014. Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications. Regional Environmental Change, 15(3), 505-515. https://doi.org/10.1007/s10113-014-0707-8 es_ES
dc.description.references Scholze, M. Knorr, W., Arnell, N.W., Prentice, I.C. 2006. A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences, 103(35), 13116-13120. https://doi.org/10.1073/pnas.0601816103 es_ES
dc.description.references Smith, M. Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B., Mizukami, N., Kitzmiller, D., Ding, F., Reed, S., Anderson, E., Schaake, J., Zhang, Y., Andréassian, V., Perrin, C., Coron, L., Valéry, A., Khakbaz, B., Sorooshian, S., Behrangi, A., Imam, B., Hsu, K.L., Todini, E.,Coccia, G., Mazzetti, C., Ortiz A.E., Francés, F.,Orozco, I., Hartman, R., Henkel, A., Fickenscher, P., Staggs, S. 2013. The distributed model intercomparison project - Phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology. Elsevier B.V., 507, 300-329. https://doi.org/10.1016/j.jhydrol.2013.08.040 es_ES
dc.description.references Stocker, T.F., Dahe, Q., Gian-Kasper, P., Melinda, M.B., Tignor, S.K. Allen, J.B., Alexander, N., Yu X., Vincent B., Pauline M.M. 2013. Cambio climático 2013-Bases físicas. Quinto Inf. Edited by 2013 Grupo Intergubernamental de Expertos sobre el Cambio Climático. 1-34. es_ES
dc.description.references Taylor, K. E., Stouffer, R. J., Meehl, G. A. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498. https://doi.org/10.1175/BAMS-D-11-00094.1 es_ES
dc.description.references Trouet, V., Oldenborgh, G.J.V. 2013. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Research, 69 (1), 3-13. https://doi.org/10.3959/1536-1098-69.1.3 es_ES
dc.description.references Wilby, R. L. Hay, L.E., Gutowski, W.J., Arritt, R.W., Takle, E.S., Pan, Z., Leavesley, G.H., Clark, M.P. 2000. Hydrological responses to dynamically and statistically downscaled climate model output. Geophysical Research Letters, 27(8), 1199-1202. https://doi.org/10.1029/1999GL006078 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem