- -

Categorisation of the Main Disruptive Events in the Sensitive Products Transportation Supply Chains

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Categorisation of the Main Disruptive Events in the Sensitive Products Transportation Supply Chains

Show simple item record

Files in this item

dc.contributor.author Schoen, Quentin es_ES
dc.contributor.author Sanchis, Raquel es_ES
dc.contributor.author Poler, Raul es_ES
dc.contributor.author Lauras, Matthieu es_ES
dc.contributor.author Fontanili, Franck es_ES
dc.contributor.author Truptil, Sébastien es_ES
dc.date.accessioned 2018-09-10T12:01:04Z
dc.date.available 2018-09-10T12:01:04Z
dc.date.issued 2018-07-26
dc.identifier.issn 2340-5317
dc.identifier.uri http://hdl.handle.net/10251/106903
dc.description.abstract [EN] The upcoming logistic environment is about to modify deeply the way we supply products. In fact, some new trends are going to require more and more agility between a large number of stakeholders in open and dynamic networks. This should be possible to achieve thanks to new data collection and treatment abilities. Considering this moving technological and logistic environment, it appears necessary to define and categorize more specifically the main disruptive events that can affect a supply chain. In fact, amount of data are collected on the field and must be helpful to make relevant decisions in case of disruption. In order to understand automatically what these data mean, it is necessary to detect and classify the disruptive events in order to find the best adaptation. This paper focuses on the sensitive products’ supply chains, that are facing with agility high requirements, based on their ability to detect disruptive events. We take as an example the blood supply chain. es_ES
dc.description.sponsorship This research work has been supported by the European Virtual Laboratory for Enterprise Interoperability, we would like to thank here. The French Blood Establishment (EFS) is equally thanked for the data and examples used to validate and discuss our proposal. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof International Journal of Production Management and Engineering
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Disruptive Event es_ES
dc.subject Supply Chain es_ES
dc.subject Sensitive Products es_ES
dc.subject Resilience es_ES
dc.subject Agility es_ES
dc.title Categorisation of the Main Disruptive Events in the Sensitive Products Transportation Supply Chains es_ES
dc.type Artículo es_ES
dc.date.updated 2018-09-10T10:56:19Z
dc.identifier.doi 10.4995/ijpme.2018.10369
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Schoen, Q.; Sanchis, R.; Poler, R.; Lauras, M.; Fontanili, F.; Truptil, S. (2018). Categorisation of the Main Disruptive Events in the Sensitive Products Transportation Supply Chains. International Journal of Production Management and Engineering. 6(2):79-89. doi:10.4995/ijpme.2018.10369 es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2018.10369 es_ES
dc.description.upvformatpinicio 79 es_ES
dc.description.upvformatpfin 89 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6
dc.description.issue 2
dc.identifier.eissn 2340-4876
dc.contributor.funder European Virtual Laboratory for Enterprise Interoperability
dc.relation.references Barroso, A.P., Machado, V.H., Machado, V.C. (2008). A supply chain disturbances classification. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management, Singapore. https://doi.org/10.1109/IEEM.2008.4738196 es_ES
dc.relation.references Barroso, H.P., Machado, V.H., Machado, V.C. (2011). Supply Chain Resilience Using the Mapping Approach. Supply Chain Management, Pengzhong Li (Ed.), InTech, Available from: http://www.intechopen.com/articles/show/title/supply-chain-resilience-using-the-mappingapproach. es_ES
dc.relation.references Barthe-Delanoë, A.M., Lauras, M., Truptil, S., Bénaben, F., Pingaud, H. (2013). A platform for event-driven agility of processes: A delivery context use-case. In Collaborative Systems for Reindustrialization (pp. 681-690). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40543-3_71 es_ES
dc.relation.references Bogataj, M., Bogataj, L., Vodopivec, R. (2005). Stability of perishable goods in cold logistic chains. International Journal of Production Economics, 93, 345-356. https://doi.org/10.1016/j.ijpe.2004.06.032 es_ES
dc.relation.references Brandon-Jones, E., Squire, B., Autry, C., Petersen, K.J. (2014). A Contingent Resource-Based Perspective of Supply Chain Resilience and Robustness. Journal of Supply Chain Management, 50(3), 55-73. https://doi.org/10.1111/jscm.12050 es_ES
dc.relation.references Christopher, M. (2005). Managing risk in the supply chain. In Christopher, M. (Ed.), Logistics & Supply Chain Management, 3rd ed. (pp. 231-58.). Prentice-Hall, Harlow. es_ES
dc.relation.references Christopher, M., Peck, H. (2004). Building the resilient supply chain. The International Journal of Logistics Management, 15(2), 1-14. https://doi.org/10.1108/09574090410700275 es_ES
dc.relation.references DHL, http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/dhl_logistics_trend_radar_2016.pdf es_ES
dc.relation.references Harris, I., Wang, Y., Wang, H. (2015) ICT in multimodal transport and technological trends: Unleashing potential for the future. International Journal of Production Economics, 159, 88-103. https://doi.org/10.1016/j.ijpe.2014.09.005 es_ES
dc.relation.references Holling, C.S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245 es_ES
dc.relation.references Kleindorfer, P., Saad, G. (2005). Managing disruption risks in supply chains. Production and Operations Management, 14(1), 53-68. https://doi.org/10.1111/j.1937-5956.2005.tb00009.x es_ES
dc.relation.references Montreuil, B. (2011). Toward a Physical Internet: meeting the global logistics sustainability grand challenge. Logistics Research, 3(2-3), 71-87. https://doi.org/10.1007/s12159-011-0045-x es_ES
dc.relation.references Morales Allende, M., Ruiz-Martin, C., Lopez-Paredes, A., Perez Ríos, J.M. (2017). Aligning Organizational Pathologies and Organizational Resilience Indicators. International Journal of Production Management and Engineering, 5(2), 107-116. https://doi.org/10.4995/ijpme.2017.7423 es_ES
dc.relation.references Ponis, S.T., Koronis, E. (2012). Supply chain resilience: definition of concept and its formative elements. Journal of Applied Business Research, 28(5), 921. https://doi.org/10.19030/jabr.v28i5.7234 es_ES
dc.relation.references Ponomarov, S.Y., Holcomb, M.C. (2009). Understanding the concept of supply chain resilience. The International Journal of Logistics Management, 20(1), 124-143. https://doi.org/10.1108/09574090910954873 es_ES
dc.relation.references Ruiz-Martin, C., López-Paredes, A., Wainer, G. (2018). What we know and do not know about organizational resilience. International Journal of Production Management and Engineering, 6(1), 11-28. https://doi.org/10.1108/09574090910954873 es_ES
dc.relation.references Sanchis, R., Poler, R. (2014). Enterprise resilience assessment: a categorisation framework of disruptions. Dirección y organización, 54, 45-53. http://hdl.handle.net/10251/58456 es_ES
dc.relation.references Sanchis, R., Poler, R. (2013). Definition of a framework to support strategic decisions to improve Enterprise Resilience. In IFAC Proceedings Volumes (IFAC-PapersOnline), 700-705. https://doi.org/10.3182/20130619-3-RU-3018.00600 es_ES
dc.relation.references Svensson, G. (2000). Conceptual framework for the analysis of vulnerability in supply chains. International Journal of Physical Distribution & Logistics Management, 30(9), 731-749. https://doi.org/10.1108/09600030010351444 es_ES
dc.relation.references Swafford, P.M., Ghosh, S., Murthy, N. (2008). Achieving supply chain agility through IT integration and flexibility. International Journal of Production Economics, 116(2), 288-297. https://doi.org/10.1016/j.ijpe.2008.09.002 es_ES
dc.relation.references Toth, P., Vigo, D. (Eds.). (2002). The vehicle routing problem. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718515 es_ES
dc.relation.references UN, (1980). United Nations. Convention on International Multimodal Transport of Goods. es_ES
dc.relation.references Van Meldert, B., De Boeck, L. (2016). Introducing autonomous vehicles in logistics: a review from a broad perspective. Faculty of Economics and Business, Leuven, Belgium. es_ES
dc.relation.references Wamba, S. F., Akter, S., Edwards, A., Chopin, G., Gnanzou, D. (2015). How 'big data'can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. https://doi.org/10.1016/j.ijpe.2014.12.031 es_ES
dc.relation.references Wieland, A., Marcus-Wallenburg, C. (2013). The influence of relational competencies on supply chain resilience: a relational view. International Journal of Physical Distribution & Logistics Management, 43(4), 300-320. https://doi.org/10.1108/IJPDLM-08-2012-0243 es_ES


This item appears in the following Collection(s)

Show simple item record