- -

Modelling drug effects on personalized 3D models of the heart: a simulation study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling drug effects on personalized 3D models of the heart: a simulation study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sebastian, Rafael es_ES
dc.contributor.author Heidenreich, Elvio es_ES
dc.contributor.author Dux-Santoy Hurtado, Lydia es_ES
dc.contributor.author Rodriguez, Jose F. es_ES
dc.contributor.author Ferrero De Loma-Osorio, José María es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.date.accessioned 2018-09-17T06:51:24Z
dc.date.available 2018-09-17T06:51:24Z
dc.date.issued 2010 es_ES
dc.identifier.issn 0302-9743 es_ES
dc.identifier.uri http://hdl.handle.net/10251/107322
dc.description.abstract [EN] The use of anti-arrhythmic drugs is common to treat heart rhythm disorders. Computational modeling and simulation are powerful tools that can be used to investigate the effects of specific drugs on cardiac electrophysiology. In this work a patient-specific anatomical heart model is built to study the effects of dofetilide, a drug that affects IKr current in cardiac cells. We study the multi-scale effects of the drug, from cellular to organ level, by simulating electrical propagation on tissue coupled cellular ion kinetics for several heart beats. Different cell populations configurations namely endocardial, midmyocardial and epicardial are used to test the effect of tissue heterogeneity. Results confirmed the expected effects of dofetilide at cellular level, increasing the action potential duration. Pseudo-ECGs obtained for each heart beat correlated well with cellular results showing prolongation of QT segment. These techniques can be applied over the development of more complex drugs that affect multiple cellular currents. es_ES
dc.description.sponsorship This work has been partially funded by the Ministerio de Ciencia e Innovacion,TEC-2008-02090. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Lecture Notes in Computer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Modelling drug effects on personalized 3D models of the heart: a simulation study es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/978-3-642-15835-3_23 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-02090/ES/MODELO MULTI-ESCALA DEL CORAZON. APLICACION EN LA PREVENCION, DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Sebastian, R.; Heidenreich, E.; Dux-Santoy Hurtado, L.; Rodriguez, JF.; Ferrero De Loma-Osorio, JM.; Saiz Rodríguez, FJ. (2010). Modelling drug effects on personalized 3D models of the heart: a simulation study. Lecture Notes in Computer Science. 6364:222-231. https://doi.org/10.1007/978-3-642-15835-3_23 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 1st International Workshop on Statistical Atlases and Computational Models of the Heart es_ES
dc.relation.conferencedate Septiembre 10-10,2010 es_ES
dc.relation.conferenceplace Beijing, China es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-642-15835-3_23 es_ES
dc.description.upvformatpinicio 222 es_ES
dc.description.upvformatpfin 231 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6364 es_ES
dc.relation.pasarela S\222458 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Yap, Y.G., Camm, A.J.: Drug induced qt prolongation and torsades de pointes. Heart 89(11), 1363–1372 (2003) es_ES
dc.description.references Recanatini, M., Poluzzi, E., Masetti, M., Cavalli, A., Ponti, F.D.: Qt prolongation through herg k(+) channel blockade: current knowledge and strategies for the early prediction during drug development. Med. Res. Rev. 25(2), 133–166 (2005) es_ES
dc.description.references Gintant, G.A., Su, Z., Martin, R.L., Cox, B.F.: Utility of herg assays as surrogate markers of delayed cardiac repolarization and qt safety. Toxicol. Pathol. 34(1), 81–90 (2006) es_ES
dc.description.references Tusscherten, K.H.W.J., Panfilov, A.V.: Eikonal formulation of the minimal principle for scroll wave filaments. Phys. Rev. Lett. 93(10), 108106 (2004) es_ES
dc.description.references Helm, P.: A novel technique for quantifying variability of cardiac anatomy applica- tion to the dyssynchronous failing heart, Ph.D. thesis, Johns Hopkins University (2005) es_ES
dc.description.references Heidenreich, E., Ferrero, J.M., Doblare, M., Rodriguez Jose, F.: Adaptive macro finite elements for the numerical solution of monodomain equation in cardiac electrophysiology. Annals of Biomedical Engineering 38, 2331–2345 (2010) es_ES
dc.description.references Drouin, E., Charpentier, F., Gauthier, C., Laurent, K., Marec, H.L.: Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of m cells. J. Am. Coll. Cardiol. 26(1), 185–192 (1995) es_ES
dc.description.references Antzelevitch, C., Sicouri, S., Litovsky, S.H., Lukas, A., Krishnan, S.C., Diego, J.M.D., Gintant, G.A., Liu, D.W.: Heterogeneity within the ventricular wall. electrophysiology and pharmacology of epicardial, endocardial, and m cells. Circ. Res. 69(6), 1427–1449 (1991) es_ES
dc.description.references Sicouri, S., Fish, J., Antzelevitch, C.: Distribution of m cells in the canine ventricle. J. Cardiovasc. Electrophysiol. 5(10), 824–837 (1994) es_ES
dc.description.references ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286(4), 1573–1589 (2004) es_ES
dc.description.references Heidenreich, E.A.: Algoritmos para ecuaciones de reaccion difusion aplicados a electrofisiologia, Ph.D. thesis, Departamento de Ingenieria Mecanica, Universidad de Zaragoza (2009) es_ES
dc.description.references Plonsey, R.: Bioelectric sources arising in excitable fibers (alza lecture). Ann. Biomed. Eng. 16(6), 519–546 (1988) es_ES
dc.description.references Potse, M., Dub, B., Richer, J., Vinet, A., Gulrajani, R.M.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12 Pt 1), 2425–2435 (2006) es_ES
dc.description.references Durrer, D., van Dam, R.T., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the isolated human heart. Circulation 41(6), 899–912 (1970) es_ES
dc.description.references Tusscher, K.H.W.J.T., Panfilov, A.V.: Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Phys. Med. Biol. 51(23), 6141–6156 (2006) es_ES
dc.description.references Yan, G.X., Wu, Y., Liu, T., Wang, J., Marinchak, R.A., Kowey, P.R.: Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-qt syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation 103(23), 2851–2856 (2001) es_ES
dc.description.references Okada, Y., Ogawa, S., Sadanaga, T., Mitamura, H.: Assessment of reverse use-dependent blocking actions of class iii antiarrhythmic drugs by 24-hour holter electrocardiography. J. Am. Coll. Cardiol. 27(1), 84–89 (1996) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem