- -

Crosslinked fibrin gels for tissue engineering: Two approaches to improve their properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Crosslinked fibrin gels for tissue engineering: Two approaches to improve their properties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gamboa-Martinez, Tatiana Carolina es_ES
dc.contributor.author Luque-Guillen, Victoria es_ES
dc.contributor.author González-García, Cristina es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Gallego-Ferrer, Gloria es_ES
dc.date.accessioned 2018-09-17T06:52:15Z
dc.date.available 2018-09-17T06:52:15Z
dc.date.issued 2015 es_ES
dc.identifier.issn 1549-3296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/107326
dc.description.abstract [EN] Fibrin is a protein that can be used as an ideal scaffolding material to promote tissue regeneration. In order to enhance its physical properties in this study a natural crosslinker, genipin (GP), was employed with the aim to obtain a hydrogel with tuneable properties for tissue engineering applications. The fibrin gel was crosslinked by two different methods using four concentrations of GP to get a stable hydrogel network. Crosslinking density, mechanical properties, swelling, and enzymatic degradation of the hydrogels were tested for each GP content and method employed. The method I: Crosslinking after gel formation promotes a high crosslinking and retains the gel shape for long term whilst the method II: Simultaneous gel formation and crosslinking improves the mechanical properties of the gel. This study confirms the use of GP at different concentrations as a suitable crosslinker of fibrin that promotes the cellular viability of L929 for 21 days of in vitro culture. es_ES
dc.description.sponsorship Contract grant sponsor: Ciber-BBN, Instituto de Salud Carlos III, European Regional Development Fund en_EN
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Biomedical Materials Research Part A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fibrin es_ES
dc.subject Genipin es_ES
dc.subject Hydrogel es_ES
dc.subject Natural crosslinker es_ES
dc.subject Tissue engineering es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Crosslinked fibrin gels for tissue engineering: Two approaches to improve their properties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbm.a.35210 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/324386/EU/Network for Development of Soft Nanofibrous Construct for Cellular Therapy of Degenerative Skeletal Disorders/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/ERA-Net EuroNanoMed 2011/PI11/03032/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Gamboa-Martinez, TC.; Luque-Guillen, V.; González-García, C.; Gómez Ribelles, JL.; Gallego-Ferrer, G. (2015). Crosslinked fibrin gels for tissue engineering: Two approaches to improve their properties. Journal of Biomedical Materials Research Part A. 103(2):614-621. https://doi.org/10.1002/jbm.a.35210 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/jbm.a.35210 es_ES
dc.description.upvformatpinicio 614 es_ES
dc.description.upvformatpfin 621 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 103 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\285322 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.contributor.funder Instituto de Salud Carlos III
dc.contributor.funder European Commission
dc.description.references Janmey, P. A., Winer, J. P., & Weisel, J. W. (2008). Fibrin gels and their clinical and bioengineering applications. Journal of The Royal Society Interface, 6(30), 1-10. doi:10.1098/rsif.2008.0327 es_ES
dc.description.references Ahmed, T. A. E., Giulivi, A., Griffith, M., & Hincke, M. (2011). Fibrin Glues in Combination with Mesenchymal Stem Cells to Develop a Tissue-Engineered Cartilage Substitute. Tissue Engineering Part A, 17(3-4), 323-335. doi:10.1089/ten.tea.2009.0773 es_ES
dc.description.references Eyrich, D., Brandl, F., Appel, B., Wiese, H., Maier, G., Wenzel, M., … Blunk, T. (2007). Long-term stable fibrin gels for cartilage engineering. Biomaterials, 28(1), 55-65. doi:10.1016/j.biomaterials.2006.08.027 es_ES
dc.description.references Ahmed, T. A. E., Dare, E. V., & Hincke, M. (2008). Fibrin: A Versatile Scaffold for Tissue Engineering Applications. Tissue Engineering Part B: Reviews, 14(2), 199-215. doi:10.1089/ten.teb.2007.0435 es_ES
dc.description.references Weisel, J. W. (2004). The mechanical properties of fibrin for basic scientists and clinicians. Biophysical Chemistry, 112(2-3), 267-276. doi:10.1016/j.bpc.2004.07.029 es_ES
dc.description.references Homminga, G. N., Buma, P., Koot, H. W. J., van der Kraan, P. M., & van den Berg, W. B. (1993). Chondrocyte behavior in fibrin glue in vitro. Acta Orthopaedica Scandinavica, 64(4), 441-445. doi:10.3109/17453679308993663 es_ES
dc.description.references Rowe, S. L., Lee, S., & Stegemann, J. P. (2007). Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomaterialia, 3(1), 59-67. doi:10.1016/j.actbio.2006.08.006 es_ES
dc.description.references Zhao, H., Ma, L., Zhou, J., Mao, Z., Gao, C., & Shen, J. (2007). Fabrication and physical and biological properties of fibrin gel derived from human plasma. Biomedical Materials, 3(1), 015001. doi:10.1088/1748-6041/3/1/015001 es_ES
dc.description.references Ho, W., Tawil, B., Dunn, J. C. Y., & Wu, B. M. (2006). The Behavior of Human Mesenchymal Stem Cells in 3D Fibrin Clots: Dependence on Fibrinogen Concentration and Clot Structure. Tissue Engineering, 12(6), 1587-1595. doi:10.1089/ten.2006.12.1587 es_ES
dc.description.references Smith, J. D., Chen, A., Ernst, L. A., Waggoner, A. S., & Campbell, P. G. (2007). Immobilization of Aprotinin to Fibrinogen as a Novel Method for Controlling Degradation of Fibrin Gels. Bioconjugate Chemistry, 18(3), 695-701. doi:10.1021/bc060265o es_ES
dc.description.references Krishnan, L. K., Vijayan Lal, A., Uma Shankar, P. ., & Mohanty, M. (2003). Fibrinolysis inhibitors adversely affect remodeling of tissues sealed with fibrin glue. Biomaterials, 24(2), 321-327. doi:10.1016/s0142-9612(02)00322-8 es_ES
dc.description.references Dare, E. V., Griffith, M., Poitras, P., Kaupp, J. A., Waldman, S. D., Carlsson, D. J., … Hincke, M. T. (2009). Genipin Cross-Linked Fibrin Hydrogels for in vitro Human Articular Cartilage Tissue-Engineered Regeneration. Cells Tissues Organs, 190(6), 313-325. doi:10.1159/000209230 es_ES
dc.description.references LORAND, L. (2006). Factor XIII: Structure, Activation, and Interactions with Fibrinogen and Fibrin. Annals of the New York Academy of Sciences, 936(1), 291-311. doi:10.1111/j.1749-6632.2001.tb03516.x es_ES
dc.description.references Urech, L., Bittermann, A. G., Hubbell, J. A., & Hall, H. (2005). Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro. Biomaterials, 26(12), 1369-1379. doi:10.1016/j.biomaterials.2004.04.045 es_ES
dc.description.references Fürst, W., & Banerjee, A. (2005). Release of Glutaraldehyde From an Albumin-Glutaraldehyde Tissue Adhesive Causes Significant In Vitro and In Vivo Toxicity. The Annals of Thoracic Surgery, 79(5), 1522-1528. doi:10.1016/j.athoracsur.2004.11.054 es_ES
dc.description.references Takigawa, T., & Endo, Y. (2006). Effects of Glutaraldehyde Exposure on Human Health. Journal of Occupational Health, 48(2), 75-87. doi:10.1539/joh.48.75 es_ES
dc.description.references Bigi, A., Cojazzi, G., Panzavolta, S., Roveri, N., & Rubini, K. (2002). Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 23(24), 4827-4832. doi:10.1016/s0142-9612(02)00235-1 es_ES
dc.description.references Silva, S. S., Motta, A., Rodrigues, M. T., Pinheiro, A. F. M., Gomes, M. E., Mano, J. F., … Migliaresi, C. (2008). Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 9(10), 2764-2774. doi:10.1021/bm800874q es_ES
dc.description.references Yuan, Y., Chesnutt, B. M., Utturkar, G., Haggard, W. O., Yang, Y., Ong, J. L., & Bumgardner, J. D. (2007). The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydrate Polymers, 68(3), 561-567. doi:10.1016/j.carbpol.2006.10.023 es_ES
dc.description.references Jin, J., Song, M., & Hourston, D. J. (2004). Novel Chitosan-Based Films Cross-Linked by Genipin with Improved Physical Properties. Biomacromolecules, 5(1), 162-168. doi:10.1021/bm034286m es_ES
dc.description.references Dare, E. V., Griffith, M., Poitras, P., Wang, T., Dervin, G. F., Giulivi, A., & Hincke, M. T. (2009). Fibrin Sealants from Fresh or Fresh/Frozen Plasma as Scaffolds for In Vitro Articular Cartilage Regeneration. Tissue Engineering Part A, 15(8), 2285-2297. doi:10.1089/ten.tea.2008.0228 es_ES
dc.description.references Linnes, M. P., Ratner, B. D., & Giachelli, C. M. (2007). A fibrinogen-based precision microporous scaffold for tissue engineering. Biomaterials, 28(35), 5298-5306. doi:10.1016/j.biomaterials.2007.08.020 es_ES
dc.description.references Schek, R., Michalek, A., & Iatridis, J. (2011). Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. European Cells and Materials, 21, 373-383. doi:10.22203/ecm.v021a28 es_ES
dc.description.references Song, F., Zhang, L.-M., Yang, C., & Yan, L. (2009). Genipin-crosslinked casein hydrogels for controlled drug delivery. International Journal of Pharmaceutics, 373(1-2), 41-47. doi:10.1016/j.ijpharm.2009.02.005 es_ES
dc.description.references Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in Regenerative Medicine. Advanced Materials, 21(32-33), 3307-3329. doi:10.1002/adma.200802106 es_ES
dc.description.references Yan, L.-P., Wang, Y.-J., Ren, L., Wu, G., Caridade, S. G., Fan, J.-B., … Reis, R. L. (2010). Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research Part A, 95A(2), 465-475. doi:10.1002/jbm.a.32869 es_ES
dc.description.references Lima, E. G., Tan, A. R., Tai, T., Marra, K. G., DeFail, A., Ateshian, G. A., & Hung, C. T. (2009). Genipin enhances the mechanical properties of tissue-engineered cartilage and protects against inflammatory degradation when used as a medium supplement. Journal of Biomedical Materials Research Part A, 91A(3), 692-700. doi:10.1002/jbm.a.32305 es_ES
dc.description.references Liang, H.-C., Chang, W.-H., Liang, H.-F., Lee, M.-H., & Sung, H.-W. (2004). Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water-soluble carbodiimide. Journal of Applied Polymer Science, 91(6), 4017-4026. doi:10.1002/app.13563 es_ES
dc.description.references Sundararaghavan, H. G., Monteiro, G. A., Lapin, N. A., Chabal, Y. J., Miksan, J. R., & Shreiber, D. I. (2008). Genipin-induced changes in collagen gels: Correlation of mechanical properties to fluorescence. Journal of Biomedical Materials Research Part A, 87A(2), 308-320. doi:10.1002/jbm.a.31715 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem