dc.contributor.author |
Kakol, Jerzy
|
es_ES |
dc.contributor.author |
López Pellicer, Manuel
|
es_ES |
dc.date.accessioned |
2018-09-17T06:59:19Z |
|
dc.date.available |
2018-09-17T06:59:19Z |
|
dc.date.issued |
2017 |
es_ES |
dc.identifier.issn |
0022-247X |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/107340 |
|
dc.description.abstract |
[EN] Following Schachermayer, a subset B of an algebra A of subsets of Ω is said to have the N-property if a B-pointwise bounded subset Mof ba(A)is uniformly bounded on A, where ba(A) is the Banach space of the real (or complex) finitely additive measures of bounded variation defined on A. Moreover B is said to have the strong N-property if for each increasing countable covering (B_m)_m of B there exists B_n which has the N-property. The classical Nikodym Grothendieck s theorem says that each σ-algebra S of subsets of Ω has the N-property. The Valdivia s theorem stating that each σ-algebra S has the strong N-property motivated the main measure-theoretic result of this paper: We show that if (B_{m_1})_{m_1} is an increasing countable covering of a σ-algebra S and if (B_{m_1},_{m_2},...,_{m_p}_{m_(p+1)}}_{m_(p+1)} is an increasing countable covering of B_{m_1},_{m_2},...,_{m_p}, for each p, m_i \in N, 1 less than or equal i less than or equal p, then there exists a sequence (n_i)_i such that each B_{n_1},_{n_2},...,_{n_r}, r∈N, has the strong N-property. In particular, for each increasing countable covering (B_m)_m of a σ-algebra S there exists B_n which has the strong N-property, improving mentioned Valdivia s theorem. Some applications to localization of bounded additive vector measures are provided. |
es_ES |
dc.description.sponsorship |
This research was supported for the first named author by the GACR project 16-34860L and RVO: 67985840. It was also supported for the first and second named authors by Generalitat Valenciana, Conselleria d'Educacio i Esport, Spain, Grant PROMETEO/2013/058. |
|
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
Journal of Mathematical Analysis and Applications |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Finitely additive scalar measure |
es_ES |
dc.subject |
(LF)-space |
es_ES |
dc.subject |
Nikodym and strong Nikodym property |
es_ES |
dc.subject |
Increasing tree |
es_ES |
dc.subject |
Sigma-algebra |
es_ES |
dc.subject |
Vector measure |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
On Valdivia strong version of Nikodym boundedness property |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1016/j.jmaa.2016.08.032 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F058/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GACR//67985840/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GACR//16-34860L/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.date.embargoEndDate |
2019-02-01 |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Kakol, J.; López Pellicer, M. (2017). On Valdivia strong version of Nikodym boundedness property. Journal of Mathematical Analysis and Applications. 446(1):1-17. https://doi.org/10.1016/j.jmaa.2016.08.032 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1016/j.jmaa.2016.08.032 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
17 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
446 |
es_ES |
dc.description.issue |
1 |
es_ES |
dc.relation.pasarela |
S\320086 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
Czech Science Foundation |
|