- -

On Valdivia strong version of Nikodym boundedness property

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On Valdivia strong version of Nikodym boundedness property

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kakol, Jerzy es_ES
dc.contributor.author López Pellicer, Manuel es_ES
dc.date.accessioned 2018-09-17T06:59:19Z
dc.date.available 2018-09-17T06:59:19Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0022-247X es_ES
dc.identifier.uri http://hdl.handle.net/10251/107340
dc.description.abstract [EN] Following Schachermayer, a subset B of an algebra A of subsets of Ω is said to have the N-property if a B-pointwise bounded subset Mof ba(A)is uniformly bounded on A, where ba(A) is the Banach space of the real (or complex) finitely additive measures of bounded variation defined on A. Moreover B is said to have the strong N-property if for each increasing countable covering (B_m)_m of B there exists B_n which has the N-property. The classical Nikodym Grothendieck s theorem says that each σ-algebra S of subsets of Ω has the N-property. The Valdivia s theorem stating that each σ-algebra S has the strong N-property motivated the main measure-theoretic result of this paper: We show that if (B_{m_1})_{m_1} is an increasing countable covering of a σ-algebra S and if (B_{m_1},_{m_2},...,_{m_p}_{m_(p+1)}}_{m_(p+1)} is an increasing countable covering of B_{m_1},_{m_2},...,_{m_p}, for each p, m_i \in N, 1 less than or equal i less than or equal p, then there exists a sequence (n_i)_i such that each B_{n_1},_{n_2},...,_{n_r}, r∈N, has the strong N-property. In particular, for each increasing countable covering (B_m)_m of a σ-algebra S there exists B_n which has the strong N-property, improving mentioned Valdivia s theorem. Some applications to localization of bounded additive vector measures are provided. es_ES
dc.description.sponsorship This research was supported for the first named author by the GACR project 16-34860L and RVO: 67985840. It was also supported for the first and second named authors by Generalitat Valenciana, Conselleria d'Educacio i Esport, Spain, Grant PROMETEO/2013/058.
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Mathematical Analysis and Applications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Finitely additive scalar measure es_ES
dc.subject (LF)-space es_ES
dc.subject Nikodym and strong Nikodym property es_ES
dc.subject Increasing tree es_ES
dc.subject Sigma-algebra es_ES
dc.subject Vector measure es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On Valdivia strong version of Nikodym boundedness property es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jmaa.2016.08.032 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F058/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GACR//67985840/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GACR//16-34860L/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-02-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Kakol, J.; López Pellicer, M. (2017). On Valdivia strong version of Nikodym boundedness property. Journal of Mathematical Analysis and Applications. 446(1):1-17. https://doi.org/10.1016/j.jmaa.2016.08.032 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.jmaa.2016.08.032 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 446 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\320086 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Czech Science Foundation


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem