Mostrar el registro sencillo del ítem
dc.contributor.author | Kakol, Jerzy | es_ES |
dc.contributor.author | López Pellicer, Manuel | es_ES |
dc.date.accessioned | 2018-09-17T06:59:19Z | |
dc.date.available | 2018-09-17T06:59:19Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0022-247X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/107340 | |
dc.description.abstract | [EN] Following Schachermayer, a subset B of an algebra A of subsets of Ω is said to have the N-property if a B-pointwise bounded subset Mof ba(A)is uniformly bounded on A, where ba(A) is the Banach space of the real (or complex) finitely additive measures of bounded variation defined on A. Moreover B is said to have the strong N-property if for each increasing countable covering (B_m)_m of B there exists B_n which has the N-property. The classical Nikodym Grothendieck s theorem says that each σ-algebra S of subsets of Ω has the N-property. The Valdivia s theorem stating that each σ-algebra S has the strong N-property motivated the main measure-theoretic result of this paper: We show that if (B_{m_1})_{m_1} is an increasing countable covering of a σ-algebra S and if (B_{m_1},_{m_2},...,_{m_p}_{m_(p+1)}}_{m_(p+1)} is an increasing countable covering of B_{m_1},_{m_2},...,_{m_p}, for each p, m_i \in N, 1 less than or equal i less than or equal p, then there exists a sequence (n_i)_i such that each B_{n_1},_{n_2},...,_{n_r}, r∈N, has the strong N-property. In particular, for each increasing countable covering (B_m)_m of a σ-algebra S there exists B_n which has the strong N-property, improving mentioned Valdivia s theorem. Some applications to localization of bounded additive vector measures are provided. | es_ES |
dc.description.sponsorship | This research was supported for the first named author by the GACR project 16-34860L and RVO: 67985840. It was also supported for the first and second named authors by Generalitat Valenciana, Conselleria d'Educacio i Esport, Spain, Grant PROMETEO/2013/058. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Finitely additive scalar measure | es_ES |
dc.subject | (LF)-space | es_ES |
dc.subject | Nikodym and strong Nikodym property | es_ES |
dc.subject | Increasing tree | es_ES |
dc.subject | Sigma-algebra | es_ES |
dc.subject | Vector measure | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On Valdivia strong version of Nikodym boundedness property | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jmaa.2016.08.032 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F058/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//67985840/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GACR//16-34860L/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-02-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Kakol, J.; López Pellicer, M. (2017). On Valdivia strong version of Nikodym boundedness property. Journal of Mathematical Analysis and Applications. 446(1):1-17. https://doi.org/10.1016/j.jmaa.2016.08.032 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.jmaa.2016.08.032 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 446 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\320086 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Czech Science Foundation |