- -

Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Gómez Lozano, Vicente es_ES
dc.contributor.author Verdia-Baguena, C. es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Ali, M. es_ES
dc.contributor.author Ensinger, W. es_ES
dc.contributor.author Mafe, S. es_ES
dc.date.accessioned 2018-09-17T07:06:39Z
dc.date.available 2018-09-17T07:06:39Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/107349
dc.description.abstract [EN] Membranes with nanofluidic diodes allow the selective control of molecules in physiological salt solutions at ambient temperature. The electrical coupling of the membranes with conventional electronic elements such as capacitors suggests opportunities for the external monitoring of sensors and actuators. We demonstrate experimentally and theoretically the voltage multiplier functionality of simple electrical networks composed of membranes with conical nanopores coupled to load capacitors. The robust operation of half and full wave voltage multipliers is achieved in a broad range of experimental conditions (single pore and multipore membranes, electrolyte concentrations, voltage amplitudes, and solid-state capacitances). The designed voltage multipliers operate in the liquid state and can be used in sensing devices because different electrical, optical, and chemical inputs are known to modulate the individual nanofluidic diode resistances in the electrical network. es_ES
dc.description.sponsorship We acknowledge the support of the Ministry of Economic Affairs and Competitiveness and FEDER (project MAT2015-65011-P) and the Generalitat Valenciana (project Prometeo/GV/0069 for Groups of Excellence). M. A., S. N. and W. E. acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany (LOEWE project iNAPO). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c5cp07203d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-65011-P/ES/NANOFLUIDICA DE POROS BIOMIMETICOS: NUEVAS APLICACIONES EN CONVERSION DE ENERGIA Y SENSORES%2FACTUADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ramirez Hoyos, P.; Gómez Lozano, V.; Verdia-Baguena, C.; Nasir, S.; Ali, M.; Ensinger, W.; Mafe, S. (2016). Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions. Physical Chemistry Chemical Physics. 18(5):3995-3999. https://doi.org/10.1039/c5cp07203d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c5cp07203d es_ES
dc.description.upvformatpinicio 3995 es_ES
dc.description.upvformatpfin 3999 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\314416 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Chun, H., & Chung, T. D. (2015). Iontronics. Annual Review of Analytical Chemistry, 8(1), 441-462. doi:10.1146/annurev-anchem-071114-040202 es_ES
dc.description.references Tagliazucchi, M., & Szleifer, I. (2015). Transport mechanisms in nanopores and nanochannels: can we mimic nature? Materials Today, 18(3), 131-142. doi:10.1016/j.mattod.2014.10.020 es_ES
dc.description.references Misra, N., Martinez, J. A., Huang, S.-C. J., Wang, Y., Stroeve, P., Grigoropoulos, C. P., & Noy, A. (2009). Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences, 106(33), 13780-13784. doi:10.1073/pnas.0904850106 es_ES
dc.description.references Senapati, S., Basuray, S., Slouka, Z., Cheng, L.-J., & Chang, H.-C. (2011). A Nanomembrane-Based Nucleic Acid Sensing Platform for Portable Diagnostics. Topics in Current Chemistry, 153-169. doi:10.1007/128_2011_142 es_ES
dc.description.references Ramirez, P., Cervera, J., Ali, M., Ensinger, W., & Mafe, S. (2014). Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem, 1(4), 698-705. doi:10.1002/celc.201300255 es_ES
dc.description.references Martin, C. R., & Siwy, Z. S. (2007). CHEMISTRY: Learning Nature’s Way: Biosensing with Synthetic Nanopores. Science, 317(5836), 331-332. doi:10.1126/science.1146126 es_ES
dc.description.references Hou, X., & Jiang, L. (2009). Learning from Nature: Building Bio-Inspired Smart Nanochannels. ACS Nano, 3(11), 3339-3342. doi:10.1021/nn901402b es_ES
dc.description.references Pérez-Mitta, G., Tuninetti, J. S., Knoll, W., Trautmann, C., Toimil-Molares, M. E., & Azzaroni, O. (2015). Polydopamine Meets Solid-State Nanopores: A Bioinspired Integrative Surface Chemistry Approach To Tailor the Functional Properties of Nanofluidic Diodes. Journal of the American Chemical Society, 137(18), 6011-6017. doi:10.1021/jacs.5b01638 es_ES
dc.description.references Reiss, H., Fuller, C. S., & Morin, F. J. (1956). Chemical Interactions Among Defects in Germanium and Silicon. Bell System Technical Journal, 35(3), 535-636. doi:10.1002/j.1538-7305.1956.tb02393.x es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555 es_ES
dc.description.references Albrecht, T. (2011). How to Understand and Interpret Current Flow in Nanopore/Electrode Devices. ACS Nano, 5(8), 6714-6725. doi:10.1021/nn202253z es_ES
dc.description.references Ali, M., Ahmed, I., Nasir, S., Ramirez, P., Niemeyer, C. M., Mafe, S., & Ensinger, W. (2015). Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores. ACS Applied Materials & Interfaces, 7(35), 19541-19545. doi:10.1021/acsami.5b06015 es_ES
dc.description.references Gomez, V., Ramirez, P., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific Reports, 5(1). doi:10.1038/srep09501 es_ES
dc.description.references Ramirez, P., Gomez, V., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Energy conversion from external fluctuating signals based on asymmetric nanopores. Nano Energy, 16, 375-382. doi:10.1016/j.nanoen.2015.07.013 es_ES
dc.description.references Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(1-6), 559-566. doi:10.1016/s1350-4487(01)00228-1 es_ES
dc.description.references Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797 es_ES
dc.description.references A. Malvino and D. J.Bates, Electronic Principles, Eighth Edition, McGraw-Hill, 2015 es_ES
dc.description.references Lemay, S. G. (2009). Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano, 3(4), 775-779. doi:10.1021/nn900336j es_ES
dc.description.references Tybrandt, K., Forchheimer, R., & Berggren, M. (2012). Logic gates based on ion transistors. Nature Communications, 3(1). doi:10.1038/ncomms1869 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem