Mostrar el registro sencillo del ítem
dc.contributor.author | Ávila, Thais | es_ES |
dc.contributor.author | Corberán, Angel | es_ES |
dc.contributor.author | Plana, Isaac | es_ES |
dc.contributor.author | Sanchís Llopis, José María | es_ES |
dc.date.accessioned | 2018-09-17T07:37:37Z | |
dc.date.available | 2018-09-17T07:37:37Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 2192-4406 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/107412 | |
dc.description.abstract | [EN] The generalized directed rural postman problem is an arc routing problem with many interesting real-life applications, such as routing for meter reading. In this application, a vehicle with a receiver travels through a series of neighborhoods. If the vehicle gets closer than a certain distance to a meter, the receiver is able to record the gas, water, or electricity consumption. Therefore, the vehicle does not need to traverse every street, but only a few, to get close enough to each meter. We study an extension of this problem in which a fleet of vehicles is available. Given the characteristics of the mentioned application, the vehicles have no capacities but there is a maximum distance (or time) constraint all of them have to satisfy.We introduce four formulations for this problem, propose some families of valid inequalities, and present four branch-and-cut algorithms for its solution. The formulations and the algorithms are compared on a large set of instances. | es_ES |
dc.description.sponsorship | The authors thank the Spanish Ministerio de Economia y Competitividad (project MTM2012-36163-C06-02) and the Generalitat Valenciana (project GVPROMETEO2013-049) for their support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | EURO Journal on Computational Optimization | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Distance constrained | es_ES |
dc.subject | Multivehicle | es_ES |
dc.subject | Generalized directed rural postman problem | es_ES |
dc.subject | Close-enough arc routing problem | es_ES |
dc.subject | Branch-and-cut | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Formulations and exact algorithms for the distance-constrained generalized directed rural postman problem | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13675-015-0053-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2012-36163-C06-02/ES/MODELOS Y METODOS DE PROGRAMACION MATEMATICA Y SUS APLICACIONES (OPTIMOS3)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F049/ES/Modelos y algoritmos para problemas de optimización combinatoria/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Ávila, T.; Corberán, A.; Plana, I.; Sanchís Llopis, JM. (2017). Formulations and exact algorithms for the distance-constrained generalized directed rural postman problem. EURO Journal on Computational Optimization. 5(3):339-365. https://doi.org/10.1007/s13675-015-0053-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13675-015-0053-8 | es_ES |
dc.description.upvformatpinicio | 339 | es_ES |
dc.description.upvformatpfin | 365 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\342982 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Ávila T, Corberán Á, Plana I, Sanchis JM (2015) A new branch-and-cut algorithm for the generalized directed rural postman problem. Transp Sci. doi: 10.1287/trsc.2015.0588 | es_ES |
dc.description.references | Benavent E, Carrotta A, Corberán Á, Sanchis JM, Vigo D (2007) Lower bounds and heuristics for the windy rural postman problem. Eur J Oper Res 176:855–869 | es_ES |
dc.description.references | Benavent E, Corberán Á, Plana I, Sanchis JM (2009) Min–max k-vehicles windy rural postman problem. Networks 54:216–226 | es_ES |
dc.description.references | Corberán Á, Laporte G (eds) (2014) Arc routing: problems, methods, and applications MOS-SIAM series on optimization, Philadelphia | es_ES |
dc.description.references | Corberán Á, Plana I, Sanchis JM (2015) Arc routing problems: data instances. http://www.uv.es/corberan/instancias.htm | es_ES |
dc.description.references | Drexl M (2007) On some generalized routing problems. PhD thesis, Rheinisch-Westfälische Technische Hochschule, Aachen University | es_ES |
dc.description.references | Drexl M (2014) On the generalized directed rural postman problem. J Oper Res Soc 65:1143–1154 | es_ES |
dc.description.references | Gendreau M, Laporte G, Semet F (1997) The covering tour problem. Oper Res 45:568–576 | es_ES |
dc.description.references | Gomory RE, Hu TC (1961) Multi-terminal network flows. J Soc Ind Appl Math 9:551–570 | es_ES |
dc.description.references | Hà M-H, Bostel N, Langevin A, Rousseau L-M (2014) Solving the close enough arc routing problem. Networks 63:107–118 | es_ES |
dc.description.references | Shuttleworth R, Golden BL, Smith S, Wasil EA (2008) Advances in meter reading: heuristic solution of the close enough traveling salesman problem over a street network. In: Golden BL, Raghavan S, Wasil EA (eds) The vehicle routing problem: latest advances and new challenges. Springer, Berlin, pp 487–501 | es_ES |