Bès, JP.; Conejero, JA.; Papathanasiou, D. (2017). Convolution operators supporting hypercyclic algebras. Journal of Mathematical Analysis and Applications. 445(2):1232-1238. https://doi.org/10.1016/j.jmaa.2016.01.029
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/107437
Title:
Convolution operators supporting hypercyclic algebras
Author:
Bès, Juan P.
Conejero, J. Alberto
Papathanasiou, Dimitris
UPV Unit:
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
2017
Embargo end date:
2019-01-15
Abstract:
[EN] We show that any convolution operator induced by a non-constant polynomial that
vanishes at zero supports a hypercyclic algebra. This partially solves a question
raised by R. Aron
Subjects:
Algebrability
,
Hypercyclic algebras
,
Convolution operators
,
Hypercyclic subspaces
,
MacLane operator
Copyrigths:
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Mathematical Analysis and Applications . (issn:
0022-247X
)
DOI:
10.1016/j.jmaa.2016.01.029
Publisher:
Elsevier
Publisher version:
http://doi.org/10.1016/j.jmaa.2016.01.029
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F005/
Thanks:
This work is supported in part by MICINN and FEDER, Project MTM2013-47093-P, and by GVA, Project ACOMP/2015/005.
Type:
Artículo