- -

The symmetric-Toeplitz linear system problem in parallel

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The symmetric-Toeplitz linear system problem in parallel

Show full item record

Alonso-Jordá, P.; Vidal Maciá, AM. (2005). The symmetric-Toeplitz linear system problem in parallel. Computational Science -- ICCS 2005,Pt 1, Proceedings. 3514:220-228. doi:10.1007/11428831_28

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/107454

Files in this item

Item Metadata

Title: The symmetric-Toeplitz linear system problem in parallel
Author: Alonso-Jordá, Pedro Vidal Maciá, Antonio Manuel
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] Many algorithms exist that exploit the special structure of Toeplitz matrices for solving linear systems. Nevertheless, these algorithms are difficult to parallelize due to its lower computational cost and the great ...[+]
Subjects: Execution Time , Parallel Algorithm , Systolic Array , Toeplitz Matrix , Toeplitz Matrices
Copyrigths: Reserva de todos los derechos
Source:
Computational Science -- ICCS 2005,Pt 1, Proceedings. (issn: 0302-9743 )
DOI: 10.1007/11428831_28
Publisher:
Springer-Verlag
Publisher version: http://doi.org/10.1007/11428831_28
Conference name: 5th International Conference on Computational Science (ICCS 2005)
Conference place: Atlanta, Estados Unidos
Conference date: Mayo 22-25,2005
Project ID:
MICYT-FEDER/TIC2003-08238-C02-02
Thanks:
Supported by Spanish MCYT and FEDER under Grant TIC 2003-08238-C02-02
Type: Artículo Comunicación en congreso Capítulo de libro

References

Sweet, D.R.: The use of linear-time systolic algorithms for the solution of toeplitz problems. k Technical Report JCU-CS-91/1, Department of Computer Science, James Cook University, Tue, 23 April 1996 15, 17, 55 GMT (1991)

Evans, D.J., Oka, G.: Parallel solution of symmetric positive definite Toeplitz systems. Parallel Algorithms and Applications 12, 297–303 (1998)

Gohberg, I., Koltracht, I., Averbuch, A., Shoham, B.: Timing analysis of a parallel algorithm for Toeplitz matrices on a MIMD parallel machine. Parallel Computing 17, 563–577 (1991) [+]
Sweet, D.R.: The use of linear-time systolic algorithms for the solution of toeplitz problems. k Technical Report JCU-CS-91/1, Department of Computer Science, James Cook University, Tue, 23 April 1996 15, 17, 55 GMT (1991)

Evans, D.J., Oka, G.: Parallel solution of symmetric positive definite Toeplitz systems. Parallel Algorithms and Applications 12, 297–303 (1998)

Gohberg, I., Koltracht, I., Averbuch, A., Shoham, B.: Timing analysis of a parallel algorithm for Toeplitz matrices on a MIMD parallel machine. Parallel Computing 17, 563–577 (1991)

Gallivan, K., Thirumalai, S., Dooren, P.V.: On solving block toeplitz systems using a block schur algorithm. In: Proceedings of the 23rd International Conference on Parallel Processing, Boca Raton, FL, USA, vol. 3, pp. 274–281. CRC Press, Boca Raton (1994)

Thirumalai, S.: High performance algorithms to solve Toeplitz and block Toeplitz systems. Ph.d. th., Grad. College of the U. of Illinois at Urbana–Champaign (1996)

Alonso, P., Badía, J.M., Vidal, A.M.: Parallel algorithms for the solution of toeplitz systems of linear equations. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 969–976. Springer, Heidelberg (2004)

Anderson, E., et al.: LAPACK Users’ Guide. SIAM, Philadelphia (1995)

Blackford, L., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)

Alonso, P., Badía, J.M., González, A., Vidal, A.M.: Parallel design of multichannel inverse filters for audio reproduction. In: Parallel and Distributed Computing and Systems, IASTED, Marina del Rey, CA, USA, vol. II, pp. 719–724 (2003)

Loan, C.V.: Computational Frameworks for the Fast Fourier Transform. SIAM Press, Philadelphia (1992)

Heinig, G.: Inversion of generalized Cauchy matrices and other classes of structured matrices. Linear Algebra and Signal Proc., IMA, Math. Appl. 69, 95–114 (1994)

Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Mathematics of Computation 64, 1557–1576 (1995)

Alonso, P., Vidal, A.M.: An efficient and stable parallel solution for symmetric toeplitz linear systems. TR DSIC-II/2005, DSIC–Univ. Polit. Valencia (2005)

Kailath, T., Sayed, A.H.: Displacement structure: Theory and applications. SIAM Review 37, 297–386 (1995)

[-]

This item appears in the following Collection(s)

Show full item record