- -

Set-Valued Chaos in Linear Dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Set-Valued Chaos in Linear Dynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bernardes, N. C. Jr. es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.contributor.author Ródenas Escribá, Francisco de Asís es_ES
dc.date.accessioned 2018-09-17T08:53:36Z
dc.date.available 2018-09-17T08:53:36Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0378-620X es_ES
dc.identifier.uri http://hdl.handle.net/10251/107461
dc.description.abstract [EN] We study several notions of chaos for hyperspace dynamics associated to continuous linear operators. More precisely, we consider a continuous linear operator on a topological vector space X, and the natural hyperspace extensions and of T to the spaces of compact subsets of X and of convex compact subsets of X, respectively, endowed with the Vietoris topology. We show that, when X is a complete locally convex space (respectively, a locally convex space), then Devaney chaos (respectively, topological ergodicity) is equivalent for the maps T, and . Also, under very general conditions, we obtain analogous equivalences for Li-Yorke chaos. Finally, some remarks concerning the topological transitivity and weak mixing properties are included, extending results in Banks (Chaos Solitons Fractals 25(3):681-685, 2005) and Peris (Chaos Solitons Fractals 26(1):19-23, 2005). es_ES
dc.description.sponsorship The first author was partially supported by CNPq (Brazil) and by the EBW+ Project (Erasmus Mundus Programme). The second and third authors were supported by MINECO, Projects MTM2013-47093-P and MTM2016-75963-P. The second author was partially supported by GVA, Project PROMETEOII/2013/013. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Integral Equations and Operator Theory es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hyperspace dynamics es_ES
dc.subject Linear dynamics es_ES
dc.subject Devaney chaos es_ES
dc.subject Li-Yorke chaos es_ES
dc.subject Mixing properties es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Set-Valued Chaos in Linear Dynamics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00020-017-2394-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bernardes, NCJ.; Peris Manguillot, A.; Ródenas Escribá, FDA. (2017). Set-Valued Chaos in Linear Dynamics. Integral Equations and Operator Theory. 88(4):451-463. https://doi.org/10.1007/s00020-017-2394-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s00020-017-2394-6 es_ES
dc.description.upvformatpinicio 451 es_ES
dc.description.upvformatpfin 463 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\360101 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Banks, J.: Chaos for induced hyperspace maps. Chaos Solitons Fractals 25(3), 681–685 (2005) es_ES
dc.description.references Bauer, W., Sigmund, K.: Topological dynamics of transformations induced on the space of probability measures. Monatsh. Math. 79, 81–92 (1975) es_ES
dc.description.references Bayart, F., Matheron, É.: Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces. J. Funct. Anal. 250(2), 426–441 (2007) es_ES
dc.description.references Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009) es_ES
dc.description.references Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011) es_ES
dc.description.references Bernardes Jr., N.C., Bonilla, A., Müller, V., Peris, A.: Li-Yorke chaos in linear dynamics. Ergod. Theory Dyn. Syst. 35(6), 1723–1745 (2015) es_ES
dc.description.references Bernardes Jr., N.C., Vermersch, R.M.: Hyperspace dynamics of generic maps of the Cantor space. Can. J. Math. 67(2), 330–349 (2015) es_ES
dc.description.references Bès, J., Menet, Q., Peris, A., Puig, Y.: Strong transitivity properties for operators. Preprint ( arXiv:1703.03724 ) es_ES
dc.description.references Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167(1), 94–112 (1999) es_ES
dc.description.references Bonet, J., Frerick, L., Peris, A., Wengenroth, J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37, 254–264 (2005) es_ES
dc.description.references de la Rosa, M., Read, C.: A hypercyclic operator whose direct sum $$T \oplus T$$ T ⊕ T is not hypercyclic. J. Oper. Theory 61(2), 369–380 (2009) es_ES
dc.description.references Fedeli, A.: On chaotic set-valued discrete dynamical systems. Chaos Solitons Fractals 23(4), 1381–1384 (2005) es_ES
dc.description.references Fu, H., Xing, Z.: Mixing properties of set-valued maps on hyperspaces via Furstenberg families. Chaos Solitons Fractals 45(4), 439–443 (2012) es_ES
dc.description.references Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967) es_ES
dc.description.references Grivaux, S.: Hypercyclic operators, mixing operators, and the bounded steps problem. J. Oper. Theory 54, 147–168 (2005) es_ES
dc.description.references Grosse-Erdmann, K.-G., Peris, A.: Weakly mixing operators on topological vector spaces. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 104(2), 413–426 (2010) es_ES
dc.description.references Grosse-Erdmann, K.-G., Peris, A.: Linear Chaos. Universitext, Springer-Verlag, Berlin (2011) es_ES
dc.description.references Guirao, J.L.G., Kwietniak, D., Lampart, M., Oprocha, P., Peris, A.: Chaos on hyperspaces. Nonlinear Anal. 71(1–2), 1–8 (2009) es_ES
dc.description.references Hernández, P., King, J., Méndez, H.: Compact sets with dense orbit in $$2^X$$ 2 X . Topol. Proc. 40, 319–330 (2012) es_ES
dc.description.references Herzog, G., Lemmert, R.: On universal subsets of Banach spaces. Math. Z. 229(4), 615–619 (1998) es_ES
dc.description.references Hou, B., Tian, G., Shi, L.: Some dynamical properties for linear operators. Ill. J. Math. 53(3), 857–864 (2009) es_ES
dc.description.references Hou, B., Tian, G., Zhu, S.: Approximation of chaotic operators. J. Oper. Theory 67(2), 469–493 (2012) es_ES
dc.description.references Illanes, A., Nadler Jr., S.B.: Hyperspaces: Fundamentals and Recent Advances. Marcel Dekker Inc, New York (1999) es_ES
dc.description.references Kupka, J.: On Devaney chaotic induced fuzzy and set-valued dynamical systems. Fuzzy Sets Syst. 177(1), 34–44 (2011) es_ES
dc.description.references Kwietniak, D., Oprocha, P.: Topological entropy and chaos for maps induced on hyperspaces. Chaos Solitons Fractals 33(1), 76–86 (2007) es_ES
dc.description.references Li, J., Yan, K., Ye, X.: Recurrence properties and disjointness on the induced spaces. Discrete Contin. Dyn. Syst. 35(3), 1059–1073 (2015) es_ES
dc.description.references Liao, G., Wang, L., Zhang, Y.: Transitivity, mixing and chaos for a class of set-valued mappings. Sci. China Ser. A Math. 49(1), 1–8 (2006) es_ES
dc.description.references Liu, H., Shi, E., Liao, G.: Sensitivity of set-valued discrete systems. Nonlinear Anal. 71(12), 6122–6125 (2009) es_ES
dc.description.references Liu, H., Lei, F., Wang, L.: Li-Yorke sensitivity of set-valued discrete systems, J. Appl. Math. (2013). Article number: 260856 es_ES
dc.description.references Peris, A.: Set-valued discrete chaos. Chaos Solitons Fractals 26(1), 19–23 (2005) es_ES
dc.description.references Peris, A., Saldivia, L.: Syndetically hypercyclic operators. Integral Equ. Oper. Theory 51, 275–281 (2005) es_ES
dc.description.references Román-Flores, H.: A note on transitivity in set-valued discrete systems. Chaos Solitons Fractals 17(1), 99–104 (2003) es_ES
dc.description.references Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc, New York (1991) es_ES
dc.description.references Salas, H.: A hypercyclic operator whose adjoint is also hypercyclic. Proc. Am. Math. Soc. 112(3), 765–770 (1991) es_ES
dc.description.references Shkarin, S.: Hypercyclic operators on topological vector spaces. J. Lond. Math. Soc. 86, 195–213 (2012) es_ES
dc.description.references Wang, Y., Wei, G.: Characterizing mixing, weak mixing and transitivity of induced hyperspace dynamical systems. Topol. Appl. 155(1), 56–68 (2007) es_ES
dc.description.references Wang, Y., Wei, G., Campbell, W.H.: Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems. Topol. Appl. 156(4), 803–811 (2009) es_ES
dc.description.references Wu, Y., Xue, X., Ji, D.: Linear transitivity on compact connected hyperspace dynamics. Dyn. Syst. Appl. 21(4), 523–534 (2012) es_ES
dc.description.references Wu, X., Wang, J., Chen, G.: F-sensitivity and multi-sensitivity of hyperspatial dynamical systems. J. Math. Anal. Appl. 429(1), 16–26 (2015) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem