Mostrar el registro sencillo del ítem
dc.contributor.author | Bernardes, N. C. Jr. | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | es_ES |
dc.contributor.author | Ródenas Escribá, Francisco de Asís | es_ES |
dc.date.accessioned | 2018-09-17T08:53:36Z | |
dc.date.available | 2018-09-17T08:53:36Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0378-620X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/107461 | |
dc.description.abstract | [EN] We study several notions of chaos for hyperspace dynamics associated to continuous linear operators. More precisely, we consider a continuous linear operator on a topological vector space X, and the natural hyperspace extensions and of T to the spaces of compact subsets of X and of convex compact subsets of X, respectively, endowed with the Vietoris topology. We show that, when X is a complete locally convex space (respectively, a locally convex space), then Devaney chaos (respectively, topological ergodicity) is equivalent for the maps T, and . Also, under very general conditions, we obtain analogous equivalences for Li-Yorke chaos. Finally, some remarks concerning the topological transitivity and weak mixing properties are included, extending results in Banks (Chaos Solitons Fractals 25(3):681-685, 2005) and Peris (Chaos Solitons Fractals 26(1):19-23, 2005). | es_ES |
dc.description.sponsorship | The first author was partially supported by CNPq (Brazil) and by the EBW+ Project (Erasmus Mundus Programme). The second and third authors were supported by MINECO, Projects MTM2013-47093-P and MTM2016-75963-P. The second author was partially supported by GVA, Project PROMETEOII/2013/013. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Integral Equations and Operator Theory | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hyperspace dynamics | es_ES |
dc.subject | Linear dynamics | es_ES |
dc.subject | Devaney chaos | es_ES |
dc.subject | Li-Yorke chaos | es_ES |
dc.subject | Mixing properties | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Set-Valued Chaos in Linear Dynamics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00020-017-2394-6 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bernardes, NCJ.; Peris Manguillot, A.; Ródenas Escribá, FDA. (2017). Set-Valued Chaos in Linear Dynamics. Integral Equations and Operator Theory. 88(4):451-463. https://doi.org/10.1007/s00020-017-2394-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s00020-017-2394-6 | es_ES |
dc.description.upvformatpinicio | 451 | es_ES |
dc.description.upvformatpfin | 463 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 88 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\360101 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Banks, J.: Chaos for induced hyperspace maps. Chaos Solitons Fractals 25(3), 681–685 (2005) | es_ES |
dc.description.references | Bauer, W., Sigmund, K.: Topological dynamics of transformations induced on the space of probability measures. Monatsh. Math. 79, 81–92 (1975) | es_ES |
dc.description.references | Bayart, F., Matheron, É.: Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces. J. Funct. Anal. 250(2), 426–441 (2007) | es_ES |
dc.description.references | Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009) | es_ES |
dc.description.references | Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011) | es_ES |
dc.description.references | Bernardes Jr., N.C., Bonilla, A., Müller, V., Peris, A.: Li-Yorke chaos in linear dynamics. Ergod. Theory Dyn. Syst. 35(6), 1723–1745 (2015) | es_ES |
dc.description.references | Bernardes Jr., N.C., Vermersch, R.M.: Hyperspace dynamics of generic maps of the Cantor space. Can. J. Math. 67(2), 330–349 (2015) | es_ES |
dc.description.references | Bès, J., Menet, Q., Peris, A., Puig, Y.: Strong transitivity properties for operators. Preprint ( arXiv:1703.03724 ) | es_ES |
dc.description.references | Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167(1), 94–112 (1999) | es_ES |
dc.description.references | Bonet, J., Frerick, L., Peris, A., Wengenroth, J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37, 254–264 (2005) | es_ES |
dc.description.references | de la Rosa, M., Read, C.: A hypercyclic operator whose direct sum $$T \oplus T$$ T ⊕ T is not hypercyclic. J. Oper. Theory 61(2), 369–380 (2009) | es_ES |
dc.description.references | Fedeli, A.: On chaotic set-valued discrete dynamical systems. Chaos Solitons Fractals 23(4), 1381–1384 (2005) | es_ES |
dc.description.references | Fu, H., Xing, Z.: Mixing properties of set-valued maps on hyperspaces via Furstenberg families. Chaos Solitons Fractals 45(4), 439–443 (2012) | es_ES |
dc.description.references | Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1–49 (1967) | es_ES |
dc.description.references | Grivaux, S.: Hypercyclic operators, mixing operators, and the bounded steps problem. J. Oper. Theory 54, 147–168 (2005) | es_ES |
dc.description.references | Grosse-Erdmann, K.-G., Peris, A.: Weakly mixing operators on topological vector spaces. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 104(2), 413–426 (2010) | es_ES |
dc.description.references | Grosse-Erdmann, K.-G., Peris, A.: Linear Chaos. Universitext, Springer-Verlag, Berlin (2011) | es_ES |
dc.description.references | Guirao, J.L.G., Kwietniak, D., Lampart, M., Oprocha, P., Peris, A.: Chaos on hyperspaces. Nonlinear Anal. 71(1–2), 1–8 (2009) | es_ES |
dc.description.references | Hernández, P., King, J., Méndez, H.: Compact sets with dense orbit in $$2^X$$ 2 X . Topol. Proc. 40, 319–330 (2012) | es_ES |
dc.description.references | Herzog, G., Lemmert, R.: On universal subsets of Banach spaces. Math. Z. 229(4), 615–619 (1998) | es_ES |
dc.description.references | Hou, B., Tian, G., Shi, L.: Some dynamical properties for linear operators. Ill. J. Math. 53(3), 857–864 (2009) | es_ES |
dc.description.references | Hou, B., Tian, G., Zhu, S.: Approximation of chaotic operators. J. Oper. Theory 67(2), 469–493 (2012) | es_ES |
dc.description.references | Illanes, A., Nadler Jr., S.B.: Hyperspaces: Fundamentals and Recent Advances. Marcel Dekker Inc, New York (1999) | es_ES |
dc.description.references | Kupka, J.: On Devaney chaotic induced fuzzy and set-valued dynamical systems. Fuzzy Sets Syst. 177(1), 34–44 (2011) | es_ES |
dc.description.references | Kwietniak, D., Oprocha, P.: Topological entropy and chaos for maps induced on hyperspaces. Chaos Solitons Fractals 33(1), 76–86 (2007) | es_ES |
dc.description.references | Li, J., Yan, K., Ye, X.: Recurrence properties and disjointness on the induced spaces. Discrete Contin. Dyn. Syst. 35(3), 1059–1073 (2015) | es_ES |
dc.description.references | Liao, G., Wang, L., Zhang, Y.: Transitivity, mixing and chaos for a class of set-valued mappings. Sci. China Ser. A Math. 49(1), 1–8 (2006) | es_ES |
dc.description.references | Liu, H., Shi, E., Liao, G.: Sensitivity of set-valued discrete systems. Nonlinear Anal. 71(12), 6122–6125 (2009) | es_ES |
dc.description.references | Liu, H., Lei, F., Wang, L.: Li-Yorke sensitivity of set-valued discrete systems, J. Appl. Math. (2013). Article number: 260856 | es_ES |
dc.description.references | Peris, A.: Set-valued discrete chaos. Chaos Solitons Fractals 26(1), 19–23 (2005) | es_ES |
dc.description.references | Peris, A., Saldivia, L.: Syndetically hypercyclic operators. Integral Equ. Oper. Theory 51, 275–281 (2005) | es_ES |
dc.description.references | Román-Flores, H.: A note on transitivity in set-valued discrete systems. Chaos Solitons Fractals 17(1), 99–104 (2003) | es_ES |
dc.description.references | Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc, New York (1991) | es_ES |
dc.description.references | Salas, H.: A hypercyclic operator whose adjoint is also hypercyclic. Proc. Am. Math. Soc. 112(3), 765–770 (1991) | es_ES |
dc.description.references | Shkarin, S.: Hypercyclic operators on topological vector spaces. J. Lond. Math. Soc. 86, 195–213 (2012) | es_ES |
dc.description.references | Wang, Y., Wei, G.: Characterizing mixing, weak mixing and transitivity of induced hyperspace dynamical systems. Topol. Appl. 155(1), 56–68 (2007) | es_ES |
dc.description.references | Wang, Y., Wei, G., Campbell, W.H.: Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems. Topol. Appl. 156(4), 803–811 (2009) | es_ES |
dc.description.references | Wu, Y., Xue, X., Ji, D.: Linear transitivity on compact connected hyperspace dynamics. Dyn. Syst. Appl. 21(4), 523–534 (2012) | es_ES |
dc.description.references | Wu, X., Wang, J., Chen, G.: F-sensitivity and multi-sensitivity of hyperspatial dynamical systems. J. Math. Anal. Appl. 429(1), 16–26 (2015) | es_ES |