Mostrar el registro sencillo del ítem
dc.contributor.author | Folch-Fortuny, Abel | es_ES |
dc.contributor.author | Vitale, Raffaele | es_ES |
dc.contributor.author | De Noord, Onno E. | es_ES |
dc.contributor.author | Ferrer, Alberto | es_ES |
dc.date.accessioned | 2018-09-27T04:29:59Z | |
dc.date.available | 2018-09-27T04:29:59Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0886-9383 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/108346 | |
dc.description.abstract | [EN] Calibration transfer between near-infrared (NIR) spectrometers is a subtle issue in chemometrics and process industry. In fact, as even very similar instruments may generate strongly different spectral responses, regression models developed on a first NIR system can rarely be used with spectra collected by a second apparatus. In this work, two novel methods to perform calibration transfer between NIR spectrometers are proposed. Both of them permit to exploit the specific relationships between instruments for imputing new unmeasured spectra, which will be then resorted to for building an improved predictive model, suitable for the analysis of future incoming data. Specifically, the two approaches are based on trimmed scores regression and joint-Y partial least squares regression, respectively. The performance of these novel strategies will be assessed and compared to that of well-established techniques such as maximum likelihood principal component analysis and piecewise direct standardisation in two real case studies. | es_ES |
dc.description.sponsorship | This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2014-55276-C5-1R and Shell Global Solutions International B.V. (Amsterdam, the Netherlands). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of Chemometrics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Calibration transfer | es_ES |
dc.subject | Joint-Y partial least squares regression (JYPLS) | es_ES |
dc.subject | Multivariate calibration | es_ES |
dc.subject | Missing data imputation | es_ES |
dc.subject | Trimmed scores regression (TSR) | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Calibration transfer between NIR spectrometers: new proposals and a comparative study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cem.2874 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Folch-Fortuny, A.; Vitale, R.; De Noord, OE.; Ferrer, A. (2017). Calibration transfer between NIR spectrometers: new proposals and a comparative study. Journal of Chemometrics. 31(3):1-11. doi:10.1002/cem.2874 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cem.2874 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 31 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\336095 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Shell Global Solutions International B.V. | es_ES |