Mostrar el registro sencillo del ítem
dc.contributor.author | Ortiz-Ramón, Rafael | es_ES |
dc.contributor.author | Larroza-Santacruz, Andrés | es_ES |
dc.contributor.author | Arana Fernandez de Moya, Estanislao | es_ES |
dc.contributor.author | Moratal, David | es_ES |
dc.date.accessioned | 2018-09-27T04:30:23Z | |
dc.date.available | 2018-09-27T04:30:23Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.isbn | 978-1-5090-2809-2 | |
dc.identifier.issn | 1557-170X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/108347 | |
dc.description | © 2017 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | |
dc.description.abstract | [EN] Brain metastases are occasionally detected before diagnosing their primary site of origin. In these cases, simple visual examination of medical images of the metastases is not enough to identify the primary cancer, so an extensive evaluation is needed. To avoid this procedure, a radiomics approach on magnetic resonance (MR) images of the metastatic lesions is proposed to classify two of the most frequent origins (lung cancer and melanoma). In this study, 50 T1-weighted MR images of brain metastases from 30 patients were analyzed: 27 of lung cancer and 23 of melanoma origin. A total of 43 statistical texture features were extracted from the segmented lesions in 2D and 3D. Five predictive models were evaluated using a nested cross-validation scheme. The best classification results were achieved using 3D texture features for all the models, obtaining an average AUC > 0.9 in all cases and an AUC = 0.947 +/- 0.067 when using the best model (naive Bayes). | es_ES |
dc.description.sponsorship | Research supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under Grant BFU2015-64380-C2-2-R. | |
dc.language | Inglés | es_ES |
dc.publisher | IEEE Engineering in Medicine and Biology Society | es_ES |
dc.relation.ispartof | Proceedings Intenational Anual Conference of IEEE Engineering in Medicine and Biology Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | A radiomics evaluation of 2D and 3D MRI texture features to classify brain metastases from lung cancer and melanoma | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1109/EMBC.2017.8036869 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Ortiz-Ramón, R.; Larroza-Santacruz, A.; Arana Fernandez De Moya, E.; Moratal, D. (2017). A radiomics evaluation of 2D and 3D MRI texture features to classify brain metastases from lung cancer and melanoma. Proceedings Intenational Anual Conference of IEEE Engineering in Medicine and Biology Society. 493-496. https://doi.org/10.1109/EMBC.2017.8036869 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2017) | es_ES |
dc.relation.conferencedate | Julio 11-15,2017 | es_ES |
dc.relation.conferenceplace | Jeju Island, South Korea | es_ES |
dc.relation.publisherversion | http://doi.org/10.1109/EMBC.2017.8036869 | es_ES |
dc.description.upvformatpinicio | 493 | es_ES |
dc.description.upvformatpfin | 496 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.pmid | 29059917 | |
dc.relation.pasarela | S\342923 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |