- -

A generalized entropy-based two-phase threshold algorithm for noisy medical image edge detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A generalized entropy-based two-phase threshold algorithm for noisy medical image edge detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Elaraby, A es_ES
dc.contributor.author Moratal, David es_ES
dc.date.accessioned 2018-09-27T04:32:01Z
dc.date.available 2018-09-27T04:32:01Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1026-3098 es_ES
dc.identifier.uri http://hdl.handle.net/10251/108351
dc.description.abstract [EN] Edge detection in medical imaging is a significant task for object recognition of human organs and is considered a pre-processing step in medical image segmentation and reconstruction. This article proposes an efficient approach based on generalized Hill entropy to find a good solution for detecting edges under noisy conditions in medical images. The proposed algorithm uses a two-phase thresholding: firstly, a global threshold calculated by means of generalized Hill entropy is used to separate the image into object and background. Afterwards, a local threshold value is determined for each part of the image. The final edge map image is a combination of these two separate images based on the three calculated thresholds. The performance of the proposed algorithm is compared to Canny and Tsallis entropy using sets of medical images corrupted by various types of noise. We used Pratt's Figure Of Merit (PFOM) as a quantitative measure for an objective comparison. Experimental results indicated that the proposed algorithm displayed superior noise resilience and better edge detection than Canny and Tsallis entropy methods for the four different types of noise analyzed, and thus it can be considered as a very interesting edge detection algorithm on noisy medical images. (c) 2017 Sharif University of Technology. All rights reserved. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and by FEDER funds under Grant BFU2015-64380-C2-2-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Scientia Iranica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Image edge detection es_ES
dc.subject Hill entropy es_ES
dc.subject Thresholding es_ES
dc.subject Canny edge detection es_ES
dc.subject Medical imaging es_ES
dc.subject Image analysis es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title A generalized entropy-based two-phase threshold algorithm for noisy medical image edge detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.24200/sci.2017.4359 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Elaraby, A.; Moratal, D. (2017). A generalized entropy-based two-phase threshold algorithm for noisy medical image edge detection. Scientia Iranica. 24(6):3247-3256. https://doi.org/10.24200/sci.2017.4359 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.24200/sci.2017.4359 es_ES
dc.description.upvformatpinicio 3247 es_ES
dc.description.upvformatpfin 3256 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\353070 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem