- -

Hybrid Circuits with Nanofluidic Diodes and Load Capacitors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid Circuits with Nanofluidic Diodes and Load Capacitors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author García-Morales, V. es_ES
dc.contributor.author Gómez Lozano, Vicente es_ES
dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.contributor.author Mafe, Salvador es_ES
dc.date.accessioned 2018-10-01T04:31:00Z
dc.date.available 2018-10-01T04:31:00Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/108669
dc.description.abstract [EN] The chemical and physical input signals characteristic of micro- and nanofluidic devices operating in ionic solutions should eventually be translated into output electric currents and potentials that are monitored with solid-state components. This crucial step requires the design of hybrid circuits showing robust electrical coupling between ionic solutions and electronic elements. We study experimentally and theoretically the connectivity of the nanofluidic diodes in single-pore and multipore membranes with conventional capacitor systems for the cases of constant, periodic, and white-noise input potentials. The experiments demonstrate the reliable operation of these hybrid circuits over a wide range of membrane resistances, electrical capacitances, and solution pH values. The model simulations are based on empirical equations that have a solid physical basis and provide a convenient description of the electrical circuit operation. The results should contribute to advance signal transduction and processing using nanoporebased biosensors and bioelectronic interfaces. es_ES
dc.description.sponsorship We acknowledge the support from the Ministry of Economic Affairs and Competitiveness and FEDER (Project No. MAT2015-65011-P). M. A., S. N., and W. E. acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, under the LOEWE project iNAPO. es_ES
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Applied es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Hybrid Circuits with Nanofluidic Diodes and Load Capacitors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevApplied.7.064035 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-65011-P/ES/NANOFLUIDICA DE POROS BIOMIMETICOS: NUEVAS APLICACIONES EN CONVERSION DE ENERGIA Y SENSORES%2FACTUADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ramirez Hoyos, P.; García-Morales, V.; Gómez Lozano, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafe, S. (2017). Hybrid Circuits with Nanofluidic Diodes and Load Capacitors. Physical Review Applied. 7(6):064035-1-064035-8. https://doi.org/10.1103/PhysRevApplied.7.064035 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevApplied.7.064035 es_ES
dc.description.upvformatpinicio 064035-1 es_ES
dc.description.upvformatpfin 064035-8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2331-7019 es_ES
dc.relation.pasarela S\342394 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Tagliazucchi, M., & Szleifer, I. (2015). Transport mechanisms in nanopores and nanochannels: can we mimic nature? Materials Today, 18(3), 131-142. doi:10.1016/j.mattod.2014.10.020 es_ES
dc.description.references Liu, Q., Wen, L., Xiao, K., Lu, H., Zhang, Z., Xie, G., … Jiang, L. (2016). A Biomimetic Voltage-Gated Chloride Nanochannel. Advanced Materials, 28(16), 3181-3186. doi:10.1002/adma.201505250 es_ES
dc.description.references Ramirez, P., Cervera, J., Ali, M., Ensinger, W., & Mafe, S. (2014). Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem, 1(4), 698-705. doi:10.1002/celc.201300255 es_ES
dc.description.references Pérez-Mitta, G., Albesa, A. G., Trautmann, C., Toimil-Molares, M. E., & Azzaroni, O. (2017). Bioinspired integrated nanosystems based on solid-state nanopores: «iontronic» transduction of biological, chemical and physical stimuli. Chemical Science, 8(2), 890-913. doi:10.1039/c6sc04255d es_ES
dc.description.references Misra, N., Martinez, J. A., Huang, S.-C. J., Wang, Y., Stroeve, P., Grigoropoulos, C. P., & Noy, A. (2009). Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences, 106(33), 13780-13784. doi:10.1073/pnas.0904850106 es_ES
dc.description.references Hou, Y., Vidu, R., & Stroeve, P. (2011). Solar Energy Storage Methods. Industrial & Engineering Chemistry Research, 50(15), 8954-8964. doi:10.1021/ie2003413 es_ES
dc.description.references Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 es_ES
dc.description.references Gomez, V., Ramirez, P., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific Reports, 5(1). doi:10.1038/srep09501 es_ES
dc.description.references Verdia-Baguena, C., Gomez, V., Cervera, J., Ramirez, P., & Mafe, S. (2017). Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel. Physical Chemistry Chemical Physics, 19(1), 292-296. doi:10.1039/c6cp06035h es_ES
dc.description.references Yehezkeli, O., Tel-Vered, R., Wasserman, J., Trifonov, A., Michaeli, D., Nechushtai, R., & Willner, I. (2012). Integrated photosystem II-based photo-bioelectrochemical cells. Nature Communications, 3(1). doi:10.1038/ncomms1741 es_ES
dc.description.references Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(1-6), 559-566. doi:10.1016/s1350-4487(01)00228-1 es_ES
dc.description.references Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f es_ES
dc.description.references Cervera, J., Ramirez, P., Gomez, V., Nasir, S., Ali, M., Ensinger, W., … Mafe, S. (2016). Multipore membranes with nanofluidic diodes allowing multifunctional rectification and logical responses. Applied Physics Letters, 108(25), 253701. doi:10.1063/1.4954764 es_ES
dc.description.references Gomez, V., Ramirez, P., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore. Applied Physics Letters, 106(7), 073701. doi:10.1063/1.4909532 es_ES
dc.description.references Kalman, E., Healy, K., & Siwy, Z. S. (2007). Tuning ion current rectification in asymmetric nanopores by signal mixing. Europhysics Letters (EPL), 78(2), 28002. doi:10.1209/0295-5075/78/28002 es_ES
dc.description.references Siwy, Z., Kosińska, I. D., Fuliński, A., & Martin, C. R. (2005). Asymmetric Diffusion through Synthetic Nanopores. Physical Review Letters, 94(4). doi:10.1103/physrevlett.94.048102 es_ES
dc.description.references Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem