- -

Geometrical definition of a continuous family of time transformations on the hyperbolic two-body problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Geometrical definition of a continuous family of time transformations on the hyperbolic two-body problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López Ortí, J.A. es_ES
dc.contributor.author Marco Castillo, Francisco J. es_ES
dc.contributor.author Martínez Uso, María José es_ES
dc.date.accessioned 2018-10-04T04:33:47Z
dc.date.available 2018-10-04T04:33:47Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/109197
dc.description.abstract [EN] This paper is aimed to address the study of techniques focused on the use of a new set of anomalies based on geometric continuous transformations, depending on a parameter a, that includes the true anomaly. This family is an extension of the elliptic geometrical transformation to the hyperbolic case. This transformation allows getting closed equations for the classical quantities of the hyperbolic two body problem both in the attractive and in the repulsive case. In this paper, we obtain the link between hyperbolic functions of hyperbolic argument H to trigonometric functions for each temporal variable in the new family, including also the inverse relations. We also carry out the study, in the attractive case, of the minimization of the errors due to the choice of a temporal variable included in our family in the numerical integration by an appropriate choice of parameters. This study includes the analysis of the dependence on the parameter of integration errors in a great time span for several eccentricities as well as the study of local truncation errors along the region with true anomaly contained in the interval [-pi/2, pi/2] around the primary for several values of the parameter. (C) 2017 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This research has been partially supported by Grant P1.1B2012-47 from University Jaume I of Castellon and Grant AICO/2015/037 from Generalitat Valenciana.
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Celestial mechanics es_ES
dc.subject Orbital motion es_ES
dc.subject Ordinary differential equations es_ES
dc.subject Computational algebra es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Geometrical definition of a continuous family of time transformations on the hyperbolic two-body problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2017.04.048 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F037/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1.1B2012-47/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation López Ortí, J.; Marco Castillo, FJ.; Martínez Uso, MJ. (2018). Geometrical definition of a continuous family of time transformations on the hyperbolic two-body problem. Journal of Computational and Applied Mathematics. 330:1081-1092. https://doi.org/10.1016/j.cam.2017.04.048 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2017.04.048 es_ES
dc.description.upvformatpinicio 1081 es_ES
dc.description.upvformatpfin 1092 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 330 es_ES
dc.relation.pasarela S\337372 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Jaume I


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem