- -

On rings of real valued clopen continuous functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On rings of real valued clopen continuous functions

Mostrar el registro completo del ítem

Afrooz, S.; Azarpanah, F.; Etebar, M. (2018). On rings of real valued clopen continuous functions. Applied General Topology. 19(2):203-216. https://doi.org/10.4995/agt.2018.7667

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/109446

Ficheros en el ítem

Metadatos del ítem

Título: On rings of real valued clopen continuous functions
Autor: Afrooz, Susan Azarpanah, Fariborz Etebar, Masoomeh
Fecha difusión:
Resumen:
[EN] Among variant kinds of strong continuity in the literature, the clopen continuity or cl-supercontinuity (i.e., inverse image of every open set is a union of clopen sets) is considered in this paper. We investigate ...[+]
Palabras clave: Clopen continuous (cl-supercontinuous) , Zero-dimensional , Ps-space , Almost Ps-space , Baer ring , p.p. ring , Quasi-component , Socle , Mildly compact , S-basically and s-extremally disconnected space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2018.7667
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2018.7667
Agradecimientos:
The authors would like to thank the referee for a carefulreading of this article.
Tipo: Artículo

References

S. Afrooz, F. Azarpanah and O. A. S. Karamzadeh, Goldie dimension of rings of fractions of C(X), Quaest. Math. 38, no. 1 (2015), 139-154. https://doi.org/10.2989/16073606.2014.923189

F. Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125, no. 7 (1997), 2149-2154. https://doi.org/10.1090/S0002-9939-97-04086-0

F. Azarpanah, On almost P-spaces, Far East J. Math. Sci. Special volume (2000), 121-132. [+]
S. Afrooz, F. Azarpanah and O. A. S. Karamzadeh, Goldie dimension of rings of fractions of C(X), Quaest. Math. 38, no. 1 (2015), 139-154. https://doi.org/10.2989/16073606.2014.923189

F. Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125, no. 7 (1997), 2149-2154. https://doi.org/10.1090/S0002-9939-97-04086-0

F. Azarpanah, On almost P-spaces, Far East J. Math. Sci. Special volume (2000), 121-132.

F. Azarpanah and O. A. S. Karamzadeh, Algebraic characterizations of some disconnected spaces, Italian J. Pure Appl. Math. 12 (2002), 155-168.

R. Engelking, General Topology, Sigma Ser. Pure Math., Vol. 6, Heldermann Verlag, Berlin, 1989.

L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976.

O. A. S. Karamzadeh and M. Rostami, On the intrinsic topology and some related ideals of C(X), Proc. Amer. Math. Soc. 93 (1985), 179-184.

R. Levy, Almost P-spaces, Can. J. Math. XXIX, no. 2 (1977), 284-288. https://doi.org/10.4153/CJM-1977-030-7

I. L. Reilly and M. K. Vamanamurthy, On supercontinuous mappings, Indian J. Pure Appl. Math. 14, no. 6 (1983), 767-772.

D. Singh, cl-supercontinuous functions, Applied Gen. Topol. 8, no. 2 (2007), 293-300. https://doi.org/10.4995/agt.2007.1899

R. Staum, The algebra of bounded continuous functions into non-archimedean field, Pacific J. Math. 50, no. 1 (1974), 169-185. https://doi.org/10.2140/pjm.1974.50.169

S. Willard, General Topology, Addison-Wesley Publishing Company, Inc., 1970

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem