- -

Completely simple endomorphism rings of modules

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Completely simple endomorphism rings of modules

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bovdi, Victor es_ES
dc.contributor.author Salim, Mohamed es_ES
dc.contributor.author Ursul, Mihail es_ES
dc.date.accessioned 2018-10-05T07:24:29Z
dc.date.available 2018-10-05T07:24:29Z
dc.date.issued 2018-10-04
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/109451
dc.description.abstract [EN] It is proved that if Ap is a countable elementary abelian p-group, then: (i) The ring End (Ap) does not admit a nondiscrete locally compact ring topology. (ii) Under (CH) the simple ring End (Ap)/I, where I is the ideal of End (Ap) consisting of all endomorphisms with finite images, does not admit a nondiscrete locally compact ring topology. (iii) The finite topology on End (Ap) is the only second metrizable ring topology on it. Moreover, a characterization of completely simple endomorphism rings of modules over commutative rings is obtained. es_ES
dc.description.sponsorship Supported by UAEU UPAR (9) 2017 Grant G00002599. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Topological ring es_ES
dc.subject Endomorphism ring es_ES
dc.subject Bohr topology es_ES
dc.subject Finite topology es_ES
dc.subject Locally compact ring es_ES
dc.title Completely simple endomorphism rings of modules es_ES
dc.type Artículo es_ES
dc.date.updated 2018-10-04T12:57:34Z
dc.identifier.doi 10.4995/agt.2018.7955
dc.relation.projectID info:eu-repo/grantAgreement/UAEU//UPAR-2017-G00002599/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bovdi, V.; Salim, M.; Ursul, M. (2018). Completely simple endomorphism rings of modules. Applied General Topology. 19(2):223-237. https://doi.org/10.4995/agt.2018.7955 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2018.7955 es_ES
dc.description.upvformatpinicio 223 es_ES
dc.description.upvformatpfin 237 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder United Arab Emirates University
dc.description.references A. V. Arkhangelskii and V. I. Ponomarev, Osnovy obshchei topologii v zadachakh i uprazhneniyakh, Izdat. Nauka, Moscow, 1974. es_ES
dc.description.references V. I. Arnautov, S. T. Glavatsky and A. V. Mikhalev, Introduction to the theory of topological rings and modules, vol. 197 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1996. es_ES
dc.description.references V. I. Arnautov and M. I. Ursul, Uniqueness of a linearly compact topology in rings, Mat. Issled. 53 (1979), 6-14, 221. es_ES
dc.description.references N. Bourbaki, Kommutativnaya algebra, Izdat. Mir, Moscow, 1971. Èlementy Matematiki, Vyp. XXVII, XXVIII, XXX, XXXI. [Foundations of Mathematics, No. XXVII, XXVIII, XXX, XXXI], Translated from the French by A. A. Belskii, Edited by E. S. Golod. es_ES
dc.description.references N. Bourbaki, General topology. Chapters 1-4. Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. es_ES
dc.description.references N. Bourbaki, Obshchaya topologiya. Izdat. Nauka, Moscow, 1975. Ispolzovanie veshchestvennykh chisel v obshchei topologii. Funktsionalnye prostranstva. Svodka rezultatov. Slovar. [Application of real numbers in general topology. Functional spaces. Resumé of results. Vocabulary], Translated from the third French edition by S. N. Krackovskii, Edited by D. A. Raikov. es_ES
dc.description.references D. Dikranjan, Minimal topological rings, Serdica 8, no. 2 (1982), 149-165. es_ES
dc.description.references R. Engelking, General topology, vol. 6 of Sigma Series in Pure Mathematics. Heldermann Verlag, Berlin, ii ed., 1989. es_ES
dc.description.references H. Freudenthal, Einige sätze über topologische gruppen, Ann. of Math. (2) 37, no. 1 (1936), 46-56. 1936. es_ES
dc.description.references E. D. Gaughan, Topological group structures of infinite symmetric groups, Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 907-910. https://doi.org/10.1073/pnas.58.3.907 es_ES
dc.description.references M. I. Graev, Theory of topological groups. I. Norms and metrics on groups. Complete groups. Free topological groups, Uspehi Matem. Nauk (N.S.) 5, no. 2 (36) (1950), 3-56. es_ES
dc.description.references E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I, vol. 115 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin-New York, second ed., 1979. https://doi.org/10.1007/978-1-4419-8638-2 es_ES
dc.description.references M. Hochster and J. O. Kiltinen, Commutative rings with identity have ring topologies, Bull. Amer. Math. Soc. 76 (1970), 419-420. https://doi.org/10.1090/S0002-9904-1970-12495-8 es_ES
dc.description.references A. Hulanicki, On locally compact topological groups of power of continuum, Fund. Math. 44 (1957), 156-158. https://doi.org/10.4064/fm-44-2-156-158 es_ES
dc.description.references N. Jacobson, Totally disconnected locally compact rings, Amer. J. Math. 58, no. 2 (1936), 433-449. https://doi.org/10.2307/2371052 es_ES
dc.description.references N. Jacobson, A note on topological fields, Amer. J. Math. 59, no. 4 (1937), 889-894. https://doi.org/10.2307/2371355 es_ES
dc.description.references N. Jacobson, Structure of rings, American Mathematical Society, Colloquium Publications, vol. 37, American Mathematical Society, 190 Hope Street, Prov., R. I., 1956. es_ES
dc.description.references F. B. Jones, On the first countability axiom for locally compact Hausdorff spaces, Colloq. Math. 7 (1959), 33-34. https://doi.org/10.4064/cm-7-1-33-34 es_ES
dc.description.references I. Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153-183. https://doi.org/10.2307/2371662 es_ES
dc.description.references I. Kaplansky, Selected papers and other writings, Springer Collected Works in Mathe-matics, Springer, New York, 2013. es_ES
dc.description.references T. Y. Lam, A first course in noncommutative rings, vol. 131 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. es_ES
dc.description.references H. Leptin, Linear kompakte moduln und ringe, Math. Z. 62 (1955), 241-267. https://doi.org/10.1007/BF01180634 es_ES
dc.description.references R. D. Mauldin, ed., The {S}cottish {B}ook, Birkhäuser/Springer, Cham, second ed., 2015. es_ES
dc.description.references A. F. Mutylin, Completely simple commutative topological rings, Mat. Zametki 5 (1969), 161-171. https://doi.org/10.1007/BF01098307 es_ES
dc.description.references L. S. Pontryagin, Continuous groups, Nauka, Moscow, fourth ed., 1984. es_ES
dc.description.references L. Skornjakov, Einfache lokal bikompakte ringe, Math. Z. 87 (1965), 241-251. https://doi.org/10.1007/BF01109942 es_ES
dc.description.references M. Ursul, Topological rings satisfying compactness conditions, vol. 549 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2002. es_ES
dc.description.references R. Ware and J. Zelmanowitz, Simple endomorphism rings, Amer. Math. Monthly 77 (1970), 987-989. https://doi.org/10.1080/00029890.1970.11992646 es_ES
dc.description.references S. Warner, Topological fields, vol. 157 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1989. Notas de Matemática [Mathematical Notes], 126. es_ES
dc.description.references S. Warner, Topological rings, vol. 178 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1993. es_ES
dc.description.references D. Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79-90. https://doi.org/10.2307/2372616 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem