- -

More on the cardinality of a topological space

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

More on the cardinality of a topological space

Mostrar el registro completo del ítem

Bonanzinga, M.; Carlson, N.; Cuzzupè, MV.; Stavrova, D. (2018). More on the cardinality of a topological space. Applied General Topology. 19(2):269-280. https://doi.org/10.4995/agt.2018.9737

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/109471

Ficheros en el ítem

Metadatos del ítem

Título: More on the cardinality of a topological space
Autor: Bonanzinga, M. Carlson, N. Cuzzupè, M. V. Stavrova, D.
Fecha difusión:
Resumen:
[EN] In this paper we continue to investigate the impact that various separation axioms and covering properties have onto the cardinality of topological spaces. Many authors have been working in that field. To mention a ...[+]
Palabras clave: n-Hausdorff space , n-Urysohn space , Homogeneous spaces , Cardinal invariants
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2018.9737
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2018.9737
Agradecimientos:
The authors are strongly indebted to the referee for the very careful reading of the paper.
Tipo: Artículo

References

O. T. Alas, More topological cardinal inequalities, Colloq. Math. 65, no. 2 (1993), 165-168. https://doi.org/10.4064/cm-65-2-165-168

A. Arhangel'skii, On cardinal invariants, General Topology and Its Relations to Modern Analysis and Algebra IV, Academic Press, New York, 1972, 37-46.

A. V. Arhangel'skii, The power of bicompacta with first axiom of countability, Sov. Math. Dokl. 10 (1969), 951-955. [+]
O. T. Alas, More topological cardinal inequalities, Colloq. Math. 65, no. 2 (1993), 165-168. https://doi.org/10.4064/cm-65-2-165-168

A. Arhangel'skii, On cardinal invariants, General Topology and Its Relations to Modern Analysis and Algebra IV, Academic Press, New York, 1972, 37-46.

A. V. Arhangel'skii, The power of bicompacta with first axiom of countability, Sov. Math. Dokl. 10 (1969), 951-955.

A. V. Arhangel'skii, A theorem about cardinality, Russian Math. Surveys 34 (1979), 303-325.

M. Bell, J. Gisburg and G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79, no. 1 (1978), 37-45. https://doi.org/10.2140/pjm.1978.79.37

M. Bonanzinga, On the Hausdorff number of a topological space, Houston J. Math. 39, no. 3 (2013), 1013-1030.

M. Bonanzinga, F. Cammaroto and M. V. Matveev, On the Urysohn number of a topological space, Quaest. Math. 34, no. 4 (2011), 441-446. https://doi.org/10.2989/16073606.2011.640456

N. A. Carlson and G. J. Ridderbos, Partition relations and power homogeneity, Top. Proc. 32 (2008), 115-124.

A. Charlesworth, On the cardinality of a topological space, Proc. Amer. Math. Soc. 66, no. 1 (1977), 138-142. https://doi.org/10.1090/S0002-9939-1977-0451184-8

U. N. B. Dissanayake and S. Willard, The almost Lindelöf degree, Canad. Math. Bull. 27, no. 4 (1984), 452-455. https://doi.org/10.4153/CMB-1984-070-2

I. Gorelic, The Baire category and forcing large Lindelöf spaces with points $G_delta$, Proc. Amer. Math. Soc. 118 (1993), 603-607.

I. Gotchev, Generalizations of two cardinal inequalities of Hajnal and Juhász, arXiv: 1504.01790[math.GN]

A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, Indag. Math. 29 (1967), 343-356. https://doi.org/10.1016/S1385-7258(67)50048-3

R. E. Hodel, Arhangel'skii's solution to Alexandroff's problem: A survey, Topol. Appl. 153, no. 13 (2006), 2199-2217. https://doi.org/10.1016/j.topol.2005.04.011

I. Juhász, Cardinal Functions in Topology - Ten Years Later, Math.l Centre Tracts 123, Amsterdam (1980).

J. Schröder, Urysohn cellularity and Urysohn spread, Math. Japonica 38 (1993), 1129-1133.

S. Shelah, On some problems in general topology, Contemporary Mathematics 192 (1996), 91-101. https://doi.org/10.1090/conm/192/02352

F. Tall, On the cardinality of Lindelöf spaces with points $G_delta$, Topology Appl. 63 (1995), 21-38. https://doi.org/10.1016/0166-8641(95)90002-0

N. V. Velicko, H-closed topological spaces, Mat. Sb. (N.S.) 70 (112) (1996), 98-112 (in Russian).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem