- -

More on the cardinality of a topological space

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

More on the cardinality of a topological space

Show full item record

Bonanzinga, M.; Carlson, N.; Cuzzupè, MV.; Stavrova, D. (2018). More on the cardinality of a topological space. Applied General Topology. 19(2):269-280. doi:10.4995/agt.2018.9737

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/109471

Files in this item

Item Metadata

Title: More on the cardinality of a topological space
Author:
Issued date:
Abstract:
[EN] In this paper we continue to investigate the impact that various separation axioms and covering properties have onto the cardinality of topological spaces. Many authors have been working in that field. To mention a ...[+]
Subjects: n-Hausdorff space , n-Urysohn space , Homogeneous spaces , Cardinal invariants
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2018.9737
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2018.9737
Thanks:
The authors are strongly indebted to the referee for the very careful reading of the paper.
Type: Artículo

References

O. T. Alas, More topological cardinal inequalities, Colloq. Math. 65, no. 2 (1993), 165-168. https://doi.org/10.4064/cm-65-2-165-168

A. Arhangel'skii, On cardinal invariants, General Topology and Its Relations to Modern Analysis and Algebra IV, Academic Press, New York, 1972, 37-46.

A. V. Arhangel'skii, The power of bicompacta with first axiom of countability, Sov. Math. Dokl. 10 (1969), 951-955. [+]
O. T. Alas, More topological cardinal inequalities, Colloq. Math. 65, no. 2 (1993), 165-168. https://doi.org/10.4064/cm-65-2-165-168

A. Arhangel'skii, On cardinal invariants, General Topology and Its Relations to Modern Analysis and Algebra IV, Academic Press, New York, 1972, 37-46.

A. V. Arhangel'skii, The power of bicompacta with first axiom of countability, Sov. Math. Dokl. 10 (1969), 951-955.

A. V. Arhangel'skii, A theorem about cardinality, Russian Math. Surveys 34 (1979), 303-325.

M. Bell, J. Gisburg and G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79, no. 1 (1978), 37-45. https://doi.org/10.2140/pjm.1978.79.37

M. Bonanzinga, On the Hausdorff number of a topological space, Houston J. Math. 39, no. 3 (2013), 1013-1030.

M. Bonanzinga, F. Cammaroto and M. V. Matveev, On the Urysohn number of a topological space, Quaest. Math. 34, no. 4 (2011), 441-446. https://doi.org/10.2989/16073606.2011.640456

N. A. Carlson and G. J. Ridderbos, Partition relations and power homogeneity, Top. Proc. 32 (2008), 115-124.

A. Charlesworth, On the cardinality of a topological space, Proc. Amer. Math. Soc. 66, no. 1 (1977), 138-142. https://doi.org/10.1090/S0002-9939-1977-0451184-8

U. N. B. Dissanayake and S. Willard, The almost Lindelöf degree, Canad. Math. Bull. 27, no. 4 (1984), 452-455. https://doi.org/10.4153/CMB-1984-070-2

I. Gorelic, The Baire category and forcing large Lindelöf spaces with points $G_delta$, Proc. Amer. Math. Soc. 118 (1993), 603-607.

I. Gotchev, Generalizations of two cardinal inequalities of Hajnal and Juhász, arXiv: 1504.01790[math.GN]

A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, Indag. Math. 29 (1967), 343-356. https://doi.org/10.1016/S1385-7258(67)50048-3

R. E. Hodel, Arhangel'skii's solution to Alexandroff's problem: A survey, Topol. Appl. 153, no. 13 (2006), 2199-2217. https://doi.org/10.1016/j.topol.2005.04.011

I. Juhász, Cardinal Functions in Topology - Ten Years Later, Math.l Centre Tracts 123, Amsterdam (1980).

J. Schröder, Urysohn cellularity and Urysohn spread, Math. Japonica 38 (1993), 1129-1133.

S. Shelah, On some problems in general topology, Contemporary Mathematics 192 (1996), 91-101. https://doi.org/10.1090/conm/192/02352

F. Tall, On the cardinality of Lindelöf spaces with points $G_delta$, Topology Appl. 63 (1995), 21-38. https://doi.org/10.1016/0166-8641(95)90002-0

N. V. Velicko, H-closed topological spaces, Mat. Sb. (N.S.) 70 (112) (1996), 98-112 (in Russian).

[-]

This item appears in the following Collection(s)

Show full item record