- -

A note about various types of sensitivity in general semiflows

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A note about various types of sensitivity in general semiflows

Show full item record

Miller, A. (2018). A note about various types of sensitivity in general semiflows. Applied General Topology. 19(2):281-289. doi:10.4995/agt.2018.9943

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/109476

Files in this item

Item Metadata

Title: A note about various types of sensitivity in general semiflows
Author:
Issued date:
Abstract:
[EN] We discuss the implications between various types of sensitivity in general semiflows (sensitivity, syndetic sensitivity, thick sensitivity, thick syndetic sensitivity, multisensitivity, periodic sensitivity, thick ...[+]
Subjects: Sensitivity , Strong mixing , Weak mixing , Strong sensitivity , Multisensitivity , Syndetic sensitivity , Thick sensitivity , Thick syndetic sensitivity , Periodic sensitivity , Thick periodic sensitivity
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2018.9943
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2018.9943
Thanks:
I would like to thank the referee for the careful reading and good questions, which helped to signi cantly improve the presentation of this article.The author was partially supported by the National Science ...[+]
Type: Artículo

References

E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, American Mathematical Society, 2003. https://doi.org/10.1090/surv/101

E. Glasner and D. Maon, Rigidity in topological dynamics, Ergod. Th. & Dynam. Sys.9 (1989), 309-320. https://doi.org/10.1017/S0143385700004983

L. He, X. Yan and L. Wang, Weak-mixing implies sensitive dependence, J. Math. Anal.Appl. 299 (2004), 300-304. https://doi.org/10.1016/j.jmaa.2004.06.066 [+]
E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs, American Mathematical Society, 2003. https://doi.org/10.1090/surv/101

E. Glasner and D. Maon, Rigidity in topological dynamics, Ergod. Th. & Dynam. Sys.9 (1989), 309-320. https://doi.org/10.1017/S0143385700004983

L. He, X. Yan and L. Wang, Weak-mixing implies sensitive dependence, J. Math. Anal.Appl. 299 (2004), 300-304. https://doi.org/10.1016/j.jmaa.2004.06.066

E. Kontorovich, M. Megrelishvili, A note on sensitivity of semigroup actions, Semigroup Forum 76 (2008), 133-141. https://doi.org/10.1007/s00233-007-9033-5

H. Liu, L. Liao and L. Wang, Thickly syndetical sensitivity of topological dynamical system, Discrete Dyn. Nature Soc. 2014, Article ID 583431.

A. Miller, Weak mixing in general semiflows implies multi-sensitivity, but not thick sensitivity, J. Nonlinear Sci. Appl., to appear.

A. Miller and C. Money, Chaos-related properties on the product of semiflows, TurkishJ. Math. 41 (2017), 1323-1336. https://doi.org/10.3906/mat-1612-39

T. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinaerity 20 (2007), 2115-2126. https://doi.org/10.1088/0951-7715/20/9/006

T. Wang, J. Yin and Q. Yan, The sufficient conditions for dynamical systems of semi-group actions to have some stronger forms of sensitivities, J. Nonlinear Sci. Appl. 9(2016), 989-997. https://doi.org/10.22436/jnsa.009.03.27

[-]

This item appears in the following Collection(s)

Show full item record