- -

On Reich type λ−α-nonexpansive mapping in Banach spaces with applications to L1([0,1])

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On Reich type λ−α-nonexpansive mapping in Banach spaces with applications to L1([0,1])

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belbaki, Rabah es_ES
dc.contributor.author Karapinar, E. es_ES
dc.contributor.author Ould-Hammouda, Amar es_ES
dc.date.accessioned 2018-10-05T08:01:06Z
dc.date.available 2018-10-05T08:01:06Z
dc.date.issued 2018-10-04
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/109480
dc.description.abstract [EN] In this manuscript we introduce a new class of monotone generalized nonexpansive mappings and establish some weak and strong convergence theorems for Krasnoselskii iteration in the setting of a Banach space with partial order. We consider also an application to the space L1([0,1]). Our results generalize and unify the several related results in the literature. es_ES
dc.description.sponsorship The authors thanks to anonymous referees for their remarkable comments, suggestion and ideas that helps to improve this paper. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fixed point es_ES
dc.subject Krasnoselskii iteration es_ES
dc.subject Monotone mapping es_ES
dc.subject Reich type λ−α-nonexpansive mapping es_ES
dc.subject Optial property es_ES
dc.title On Reich type λ−α-nonexpansive mapping in Banach spaces with applications to L1([0,1]) es_ES
dc.type Artículo es_ES
dc.date.updated 2018-10-04T12:57:50Z
dc.identifier.doi 10.4995/agt.2018.10213
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Belbaki, R.; Karapinar, E.; Ould-Hammouda, A. (2018). On Reich type λ−α-nonexpansive mapping in Banach spaces with applications to L1([0,1]). Applied General Topology. 19(2):291-305. https://doi.org/10.4995/agt.2018.10213 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2018.10213 es_ES
dc.description.upvformatpinicio 291 es_ES
dc.description.upvformatpfin 305 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Anal. 74 (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057 es_ES
dc.description.references J.-B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach. I, II. In : Séminaire d'analyse fonctionnelle (1978-1979), pp. 7-8. Ecole Polytech., Palaiseau (1979). es_ES
dc.description.references H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88, no. 3 (1983), 486-490. https://doi.org/10.2307/2044999 es_ES
dc.description.references F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965) 1041-1044. https://doi.org/10.1073/pnas.54.4.1041 es_ES
dc.description.references F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA 53 (1965), 1272-1276. https://doi.org/10.1073/pnas.53.6.1272 es_ES
dc.description.references J. B. Diaz and F. T. Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Am. Math. Soc.73 (1967), 516-519. https://doi.org/10.1090/S0002-9904-1967-11725-7 es_ES
dc.description.references J. G. Falset, E. L. Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), 185-195. https://doi.org/10.1016/j.jmaa.2010.08.069 es_ES
dc.description.references K. Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983), 115-123. https://doi.org/10.1090/conm/021/729507 es_ES
dc.description.references K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28, p.244. Cambridge University Press (1990). https://doi.org/10.1017/CBO9780511526152 es_ES
dc.description.references D. Gohde, Zum prinzip der dertraktiven abbildung, Math. Nachr. 30 (1965), 251-258. https://doi.org/10.1002/mana.19650300312 es_ES
dc.description.references J. P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573. https://doi.org/10.2140/pjm.1972.40.565 es_ES
dc.description.references E. Karapinar, Remarks on Suzuki (C)-condition, dynamical systems and methods, Springer-Verlag New York, 2012, Part 2, 227-243. es_ES
dc.description.references E. Karapinar and K. Tas, Generalized (C)-conditions and related fixed point theorems, Comput. Math. Appl. 61, no. 11 (2011), 3370-3380. https://doi.org/10.1016/j.camwa.2011.04.035 es_ES
dc.description.references M. A. Khamsi, and A. R. Khan, On monotone nonexpansive mappings in L1[0,1]. Fixed point theory Appl. 2015, Article ID 94 (2015). https://doi.org/10.1186/s13663-015-0346-x es_ES
dc.description.references W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Mon. 72 (1965), 1004-1006. https://doi.org/10.2307/2313345 es_ES
dc.description.references W. A. Kirk, Krasnoselskii's iteration process in hyperbolic space, Numer. Func. Anal. Opt. 4, no. 4 (1982), 371-381. https://doi.org/10.1080/01630568208816123 es_ES
dc.description.references Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0 es_ES
dc.description.references R. Shukla, R. Pant and M. De la Sen, Generalized $alpha$-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications (2017) 2017:4. https://doi.org/10.1186/s13663-017-0597-9 es_ES
dc.description.references Y. Song, K. Promluang, P. Kuman and Y. Je Cho, Some convergence theorems of the Mann iteration for monotone α-nonexpansive mappings, Appl. Math. Comput. 287/288 (2016), 74-82. https://doi.org/10.1016/j.amc.2016.04.011 es_ES
dc.description.references T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340, no. 2 (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023 es_ES
dc.description.references D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. 25 (1982), 139-144. es_ES
dc.description.references https://doi.org/10.1112/jlms/s2-25.1.139 es_ES
dc.description.references P. Veeramani, On some fixed point theorems on uniformly convex Banach spaces, J. Math. Anal. Appl. 167 (1992), 160-166. https://doi.org/10.1016/0022-247X(92)90243-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem