Mostrar el registro sencillo del ítem
dc.contributor.author | Motos Izquierdo, Joaquín | es_ES |
dc.contributor.author | Planells Gilabert, María Jesús | es_ES |
dc.contributor.author | Talavera Usano, César Félix | es_ES |
dc.date.accessioned | 2018-10-06T04:34:51Z | |
dc.date.available | 2018-10-06T04:34:51Z | |
dc.date.issued | 2008 | es_ES |
dc.identifier.issn | 0025-5874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/109816 | |
dc.description.abstract | [EN] The weighted L p -spaces of entire analytic functions are generalized to the vector-valued setting. In particular, it is shown that the dual of the space LKp,¿(E) is isomorphic to L¿Kp¿,¿¿1(E¿) when the function ¿ K is an L p,¿ (E)-Fourier multiplier. This result allows us to give some new characterizations of the so-called UMD-property and to represent several ultradistribution spaces by means of spaces of vector sequences. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mathematische Zeitschrift | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Beurling ultradistributions | es_ES |
dc.subject | Weighted L p-spaces of entire analytic functions | es_ES |
dc.subject | Fourier multipliers | es_ES |
dc.subject | UMD-property | es_ES |
dc.subject | Besov, Hörmander spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On weighted L_p-spaces of vector-valued entire analytic functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00209-007-0283-4 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Motos Izquierdo, J.; Planells Gilabert, MJ.; Talavera Usano, CF. (2008). On weighted L_p-spaces of vector-valued entire analytic functions. Mathematische Zeitschrift. 260(2):451-472. doi:10.1007/s00209-007-0283-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00209-007-0283-4 | es_ES |
dc.description.upvformatpinicio | 451 | es_ES |
dc.description.upvformatpfin | 472 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 260 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\34214 | es_ES |
dc.description.references | Aldous D.J. (1979). Unconditional bases and martingales in L p (F). Math. Proc. Camb. Phil. Soc. 85: 117–123 | es_ES |
dc.description.references | Amann H. (1997). Operator-valued Fourier multipliers, vector-valued Besov spaces and applications. Math. Nachr. 186: 5–56 | es_ES |
dc.description.references | Björck G. (1966). Linear partial differential operators and generalized distributions. Ark. Mat. 6: 351–407 | es_ES |
dc.description.references | Bourgain J. (1984). Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 22: 163–168 | es_ES |
dc.description.references | Burkholder, D.L.: A geometrical condition that implies the existence of certain singular integrals of Banach-space-valued functions. In: Proceedings of conference on Harmonic analysis in Honour of Antoni Zygmund, Chicago 1981 (Belmont Cal., Wadsworth), pp. 270–286 (1983) | es_ES |
dc.description.references | Capon M. (1983). Primarité de L p (X). Trans. Am. Math. Soc. 276: 431–487 | es_ES |
dc.description.references | Coifman R.R. and Fefferman C. (1974). Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51: 241–250 | es_ES |
dc.description.references | Defant M. (1989). On the vector-valued Hilbert transform. Math. Nachr. 141: 251–265 | es_ES |
dc.description.references | Diestel, J., Uhl, J.J.:Vector measures, Mathematical Surveys, no. 15, Am. Math. Soc., Providence (1977) | es_ES |
dc.description.references | Dinculeanu N. (1967). Vector Measures, International Series of Monographs in Pure and Applied Mathematics, no. 95. Pergamon, New York | es_ES |
dc.description.references | Fefferman C. (1971). The multiplier problem for the ball. Ann. Math. 94: 330–336 | es_ES |
dc.description.references | Frazier M., Jawerth B., Weiss G. (1991) Littlewood–Paley theory and the study of function spaces. In: CBMS Regional Conference on Series Mathematics, no. 79. AMS, Providence | es_ES |
dc.description.references | García-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics, North Holland Mathematical Studies, vol. 116, Amsterdam (1985) | es_ES |
dc.description.references | Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc., no. 16, AMS, Providence (1955) | es_ES |
dc.description.references | Grudzinski O. (1979). Temperierte Beurling-distributionen. Math. Nachr. 91: 297–320 | es_ES |
dc.description.references | Holub J.R. (1971). Hilbertian operators and reflexive tensor products. Pacific J. Math. 36: 185–194 | es_ES |
dc.description.references | Hörmander L. (1960). Estimates for translation invariant operators on L p spaces. Acta Math. 104: 93–139 | es_ES |
dc.description.references | Hörmander L. (1983). The Analysis of Linear Partial Differential Operators II, Grundlehren, no. 257. Springer, Berlin | es_ES |
dc.description.references | Komatsu H. (1973). Ultradistributions I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo. Sect. IA Math. 20: 25–105 | es_ES |
dc.description.references | Komatsu H. (1982). Ultradistributions III. Vector-valued ultradistributions and the theory of kernels. J. Fac. Sci. Univ. Tokyo. Sect. IA Math. 29: 653–718 | es_ES |
dc.description.references | Lindenstrauss J. and Pełczyński A. (1968) Absolutely summing operators in $${\mathcal{L}}_p$$ spaces and their applications. Stud. Math. 29: 275–326 | es_ES |
dc.description.references | Lindenstrauss J. and Tzafriri L. (1977). Classical Banach spaces I. Springer, Heidelberg | es_ES |
dc.description.references | Löfstrom J. (1982) Interpolation of weighted spaces of differentiable functions on $${\mathbb{R}}^d$$ . Ann. Math. Pura Appl. 132: 189–214 | es_ES |
dc.description.references | Mitiagin B.S. (1972). On idempotent multipliers in symmetric functional spaces. Funkcional Anal. i Priložen 6: 81–82 | es_ES |
dc.description.references | Motos, J., Planells, M.J., Talavera, C.F.: On some iterated weighted spaces. J. Math. Anal. Appl. 338, 162–174 (2008) doi: 10.1016/j.jmaa.2007.05.009 | es_ES |
dc.description.references | Muckenhoupt B. (1972). Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165: 207–226 | es_ES |
dc.description.references | Nikol’skij S.M. (1975). Approximation of Functions of Several Variables and Imbedding Theorems. Springer, Berlin | es_ES |
dc.description.references | Odell E. (1976). On complemented subspaces of (∑ l 2) l p . Israel J. Math. 23: 353–367 | es_ES |
dc.description.references | Rosenthal, H.P.: Projections onto translation-invariant subspaces of L p (G). Memoirs Am. Math. Soc., no. 63, AMS, Providence (1966) | es_ES |
dc.description.references | Rubio de Francia J.L. (1986). Martingale and integral transforms of Banach space valued functions. In: Bastero, J. and San Miguel, M. (eds) Probability and Banach Spaces, Lecture Notes in Mathematics, no. 1221, pp 195–222. Springer, Berlin | es_ES |
dc.description.references | Rubio de Francia J.L., Ruiz F.J. and Torrea J.L. (1986). Calderón–Zygmund theory for operator-valued kernels. Adv. Math. 62: 7–48 | es_ES |
dc.description.references | Schmeisser, H.J.: Vector-valued Sobolev and Besov spaces, Teubner-Text. Math., no. 96, Teubner, Leipzig, pp. 4–44 (1987) | es_ES |
dc.description.references | Schmeisser H.J. and Triebel H. (1987). Topics in Fourier analysis and Function Spaces. Chichester, Wiley | es_ES |
dc.description.references | Schwartz L. (1954). Espaces de fonctions différentiables à valeurs vectorielles. J. Anal. Math. 4: 88–148 | es_ES |
dc.description.references | Schwartz L. (1957). Théorie des distributions à valeurs vectorielles. Ann. Inst. Fourier 7: 1–141 | es_ES |
dc.description.references | Trèves F. (1967). Topological Vector Spaces, Distributions and Kernels. Academic Press, New York | es_ES |
dc.description.references | Triebel H. (1973). Über die Existenz von Schauderbasen in Sobolev–Besov–Raümen. Isomorphiebeziehungen Stud. Math. 46: 83–100 | es_ES |
dc.description.references | Triebel, H.: Fourier analysis and function spaces, Teubner Texte Math., no. 7, Teubner, Leipzig (1977) | es_ES |
dc.description.references | Triebel H. (1978). Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam | es_ES |
dc.description.references | Triebel H. (1983). Theory of Function Spaces. Birkhäuser, Basel | es_ES |
dc.description.references | Triebel H. (1997). Fractals and Spectra. Birkhäuser, Basel | es_ES |
dc.description.references | Vogt, D.: Sequence space representations of spaces of test functions and distributions. In: Zapata, G.I. (ed.) Functional analysis, holomorphy and approximation theory, Lecture Notes in Pure and Applied Mathematics, no. 83, pp. 405–443 (1983) | es_ES |
dc.description.references | Wojtaczczyk P. (1991). Banach Spaces for Analysts. Cambridge University Press, Cambridge | es_ES |