- -

Toward an Evolved Concept of Landrace

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Toward an Evolved Concept of Landrace

Show simple item record

Files in this item

dc.contributor.author Casañas Artigas, Francesc es_ES
dc.contributor.author Simo, Joan es_ES
dc.contributor.author Casals, Joan es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.date.accessioned 2018-10-18T04:31:52Z
dc.date.available 2018-10-18T04:31:52Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/110825
dc.description.abstract [EN] The term "landrace" has generally been defined as a cultivated, genetically heterogeneous variety that has evolved in a certain ecogeographical area and is therefore adapted to the edaphic and climatic conditions and to its traditional management and uses. Despite being considered by many to be inalterable, landraces have been and are in a constant state of evolution as a result of natural and artificial selection. Many landraces have disappeared from cultivation but are preserved in gene banks. Using modern selection and breeding technology tools to shape these preserved landraces together with the ones that are still cultivated is a further step in their evolution in order to preserve their agricultural significance. Adapting historical landraces to present agricultural conditions using cutting-edge breeding technology represents a challenging opportunity to use them in a modern sustainable agriculture, as an immediate return on the investment is highly unlikely. Consequently, we propose a more inclusive definition of landraces, namely that they consist of cultivated varieties that have evolved and may continue evolving, using conventional or modern breeding techniques, in traditional or new agricultural environments within a defined ecogeographical area and under the influence of the local human culture. This includes adaptation of landraces to new management systems and the unconscious or conscious selection made by farmers or breeders using available technology. In this respect, a mixed selection system might be established in which farmers and other social agents develop evolved landraces from the variability generated by public entities. es_ES
dc.description.sponsorship This work has been partially funded by the European Union's Horizon 2020 research and innovation program under grant agreements no. 634651 (TRADITOM) and no. 677379 (G2PSOL). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Landraces es_ES
dc.subject Heirlooms es_ES
dc.subject Evolution es_ES
dc.subject Breeding es_ES
dc.subject Biotechnology es_ES
dc.subject Traditional varieties es_ES
dc.subject Cultural preferences es_ES
dc.subject.classification GENETICA es_ES
dc.title Toward an Evolved Concept of Landrace es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2017.00145 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Casañas Artigas, F.; Simo, J.; Casals, J.; Prohens Tomás, J. (2017). Toward an Evolved Concept of Landrace. Frontiers in Plant Science. 8. https://doi.org/10.3389/fpls.2017.00145 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.3389/fpls.2017.00145 es_ES
dc.description.upvformatpinicio 145 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 28228769
dc.identifier.pmcid PMC5296298
dc.relation.pasarela S\354063 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Almirall, A., Bosch, L., Romero del Castillo, R., Rivera, A., & Casañas, F. (2010). ‘Croscat’ Common Bean (Phaseolus vulgaris L.), a Prototypical Cultivar within the ‘Tavella Brisa’ Type. HortScience, 45(3), 432-433. doi:10.21273/hortsci.45.3.432 es_ES
dc.description.references Bitocchi, E., Bellucci, E., Rau, D., Albertini, E., Rodriguez, M., Veronesi, F., … Nanni, L. (2015). European Flint Landraces Grown In Situ Reveal Adaptive Introgression from Modern Maize. PLOS ONE, 10(4), e0121381. doi:10.1371/journal.pone.0121381 es_ES
dc.description.references BITOCCHI, E., NANNI, L., ROSSI, M., RAU, D., BELLUCCI, E., GIARDINI, A., … PAPA, R. (2009). Introgression from modern hybrid varieties into landrace populations of maize (Zea maysssp.maysL.) in central Italy. Molecular Ecology, 18(4), 603-621. doi:10.1111/j.1365-294x.2008.04064.x es_ES
dc.description.references Bosch, L., Casañas, F., Sánchez, E., Pujolà, M., & Nuez, F. (1998). Selection L67, a Pure Line with True Seed Type of the Ganxet Common Bean (Phaseolus vulgaris L.). HortScience, 33(5), 905-906. doi:10.21273/hortsci.33.5.905 es_ES
dc.description.references Casals, J., Bosch, L., Casañas, F., Cebolla, J., & Nuez, F. (2010). Montgrí, a Cultivar within the Montserrat Tomato Type. HortScience, 45(12), 1885-1886. doi:10.21273/hortsci.45.12.1885 es_ES
dc.description.references Causse, M., Desplat, N., Pascual, L., Le Paslier, M.-C., Sauvage, C., Bauchet, G., … Bouchet, J.-P. (2013). Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics, 14(1), 791. doi:10.1186/1471-2164-14-791 es_ES
dc.description.references Ellstrand, N. C. (2014). Is gene flow the most important evolutionary force in plants? American Journal of Botany, 101(5), 737-753. doi:10.3732/ajb.1400024 es_ES
dc.description.references Ellstrand, N. C., Meirmans, P., Rong, J., Bartsch, D., Ghosh, A., de Jong, T. J., … Hooftman, D. (2013). Introgression of Crop Alleles into Wild or Weedy Populations. Annual Review of Ecology, Evolution, and Systematics, 44(1), 325-345. doi:10.1146/annurev-ecolsys-110512-135840 es_ES
dc.description.references Ellstrand, N. C., Prentice, H. C., & Hancock, J. F. (1999). Gene Flow and Introgression from Domesticated Plants into Their Wild Relatives. Annual Review of Ecology and Systematics, 30(1), 539-563. doi:10.1146/annurev.ecolsys.30.1.539 es_ES
dc.description.references Ferreira, J. J., Campa, A., Pérez-Vega, E., Rodríguez-Suárez, C., & Giraldez, R. (2011). Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus. Theoretical and Applied Genetics, 124(4), 777-788. doi:10.1007/s00122-011-1746-x es_ES
dc.description.references García-Martínez, S., Grau, A., Alonso, A., Rubio, F., Valero, M., & Ruiz, J. J. (2011). UMH 1200, a Breeding Line within the Muchamiel Tomato Type Resistant to Three Viruses. HortScience, 46(7), 1054-1055. doi:10.21273/hortsci.46.7.1054 es_ES
dc.description.references Gompert, Z., & Buerkle, C. A. (2016). What, if anything, are hybrids: enduring truths and challenges associated with population structure and gene flow. Evolutionary Applications, 9(7), 909-923. doi:10.1111/eva.12380 es_ES
dc.description.references Harlan, J. R. (1965). The possible role of weed races in the evolution of cultivated plants. Euphytica, 14(2), 173-176. doi:10.1007/bf00038984 es_ES
dc.description.references Jarvis, D. I., & Hodgkin, T. (1999). Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Molecular Ecology, 8(s1), S159-S173. doi:10.1046/j.1365-294x.1999.00799.x es_ES
dc.description.references Messeguer, J. (2003). Plant Cell, Tissue and Organ Culture, 73(3), 201-212. doi:10.1023/a:1023007606621 es_ES
dc.description.references Nogué, F., Mara, K., Collonnier, C., & Casacuberta, J. M. (2016). Genome engineering and plant breeding: impact on trait discovery and development. Plant Cell Reports, 35(7), 1475-1486. doi:10.1007/s00299-016-1993-z es_ES
dc.description.references Prohens, J., Muñoz-Falcón, J. E., Rodríguez-Burruezo, A., Ribas, F., Castro, Á., & Nuez, F. (2009). ‘H15’, an Almagro-type Pickling Eggplant with High Yield and Reduced Prickliness. HortScience, 44(7), 2017-2019. doi:10.21273/hortsci.44.7.2017 es_ES
dc.description.references Simó, J., del Castillo, R. R., Almirall, A., & Casañas, F. (2012). ‘Roquerola’ and ‘Montferri’, First Improved Onion (Allium cepa L.) Cultivars for «Calçots» Production. HortScience, 47(6), 801-802. doi:10.21273/hortsci.47.6.801 es_ES
dc.description.references Villa, T. C. C., Maxted, N., Scholten, M., & Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genetic Resources, 3(3), 373-384. doi:10.1079/pgr200591 es_ES
dc.description.references Zeven, A. C. (1998). Euphytica, 104(2), 127-139. doi:10.1023/a:1018683119237 es_ES


This item appears in the following Collection(s)

Show simple item record