- -

Drug-DNA complexation as the key factor in photosensitized thymine dimerization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Drug-DNA complexation as the key factor in photosensitized thymine dimerization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cuquerella Alabort, Maria Consuelo es_ES
dc.contributor.author Lhiaubet, Virginie Lyria es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Bosca Mayans, Francisco es_ES
dc.date.accessioned 2018-10-31T05:32:28Z
dc.date.available 2018-10-31T05:32:28Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/111604
dc.description.abstract [EN] The crucial role of photosensitizer@DNA complexation in the formation of cyclobutane pyrimidine dimers (CPDs) has been demonstrated using femtosecond and nanosecond transient absorption and emission measurements in combination with in vitro DNA damage assays. This finding opens the door to re-evaluate the mechanisms involved in CPDs photosensitized by other chemicals. es_ES
dc.description.sponsorship Spanish Government (CTQ2014-54729-C2-2-P, CTQ2015-70164-P and Severo Ochoa program/SEV-2012-0267) and Generalitat Valenciana (Prometeo II program) are gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Drug-DNA complexation as the key factor in photosensitized thymine dimerization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c6cp08485k es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-54729-C2-2-P/ES/DISEÑO DE NUEVAS PRODROGAS ANTICANCERIGENAS FOTOACTIVABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Cuquerella Alabort, MC.; Lhiaubet, VL.; Miranda Alonso, MÁ.; Bosca Mayans, F. (2017). Drug-DNA complexation as the key factor in photosensitized thymine dimerization. Physical Chemistry Chemical Physics. 19(7):4951-4955. https://doi.org/10.1039/c6cp08485k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c6cp08485k es_ES
dc.description.upvformatpinicio 4951 es_ES
dc.description.upvformatpfin 4955 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\325620 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Branzei, D., & Foiani, M. (2008). Regulation of DNA repair throughout the cell cycle. Nature Reviews Molecular Cell Biology, 9(4), 297-308. doi:10.1038/nrm2351 es_ES
dc.description.references Cadet, J., Grand, A., & Douki, T. (2014). Solar UV Radiation-Induced DNA Bipyrimidine Photoproducts: Formation and Mechanistic Insights. Topics in Current Chemistry, 249-275. doi:10.1007/128_2014_553 es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h es_ES
dc.description.references Beukers, R., Eker, A. P. M., & Lohman, P. H. M. (2008). 50 years thymine dimer. DNA Repair, 7(3), 530-543. doi:10.1016/j.dnarep.2007.11.010 es_ES
dc.description.references Schreier, W. J., Gilch, P., & Zinth, W. (2015). Early Events of DNA Photodamage. Annual Review of Physical Chemistry, 66(1), 497-519. doi:10.1146/annurev-physchem-040214-121821 es_ES
dc.description.references Schreier, W. J., Schrader, T. E., Koller, F. O., Gilch, P., Crespo-Hernandez, C. E., Swaminathan, V. N., … Kohler, B. (2007). Thymine Dimerization in DNA Is an Ultrafast Photoreaction. Science, 315(5812), 625-629. doi:10.1126/science.1135428 es_ES
dc.description.references Banyasz, A., Douki, T., Improta, R., Gustavsson, T., Onidas, D., Vayá, I., … Markovitsi, D. (2012). Electronic Excited States Responsible for Dimer Formation upon UV Absorption Directly by Thymine Strands: Joint Experimental and Theoretical Study. Journal of the American Chemical Society, 134(36), 14834-14845. doi:10.1021/ja304069f es_ES
dc.description.references Kwok, W.-M., Ma, C., & Phillips, D. L. (2008). A Doorway State Leads to Photostability or Triplet Photodamage in Thymine DNA. Journal of the American Chemical Society, 130(15), 5131-5139. doi:10.1021/ja077831q es_ES
dc.description.references Schreier, W. J., Kubon, J., Regner, N., Haiser, K., Schrader, T. E., Zinth, W., … Gilch, P. (2009). Thymine Dimerization in DNA Model Systems: Cyclobutane Photolesion Is Predominantly Formed via the Singlet Channel. Journal of the American Chemical Society, 131(14), 5038-5039. doi:10.1021/ja900436t es_ES
dc.description.references Pilles, B. M., Bucher, D. B., Liu, L., Clivio, P., Gilch, P., Zinth, W., & Schreier, W. J. (2014). Mechanism of the Decay of Thymine Triplets in DNA Single Strands. The Journal of Physical Chemistry Letters, 5(9), 1616-1622. doi:10.1021/jz500364g es_ES
dc.description.references Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p es_ES
dc.description.references Serrano-Pérez, J. J., González-Ramírez, I., Coto, P. B., Merchán, M., & Serrano-Andrés, L. (2008). Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine. The Journal of Physical Chemistry B, 112(45), 14096-14098. doi:10.1021/jp806794x es_ES
dc.description.references Zhang, R. B., & Eriksson, L. A. (2006). A Triplet Mechanism for the Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA. The Journal of Physical Chemistry B, 110(14), 7556-7562. doi:10.1021/jp060196a es_ES
dc.description.references Law, Y. K., Forties, R. A., Liu, X., Poirier, M. G., & Kohler, B. (2013). Sequence-dependent thymine dimer formation and photoreversal rates in double-stranded DNA. Photochemical & Photobiological Sciences, 12(8), 1431. doi:10.1039/c3pp50078k es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e es_ES
dc.description.references Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d es_ES
dc.description.references Nogueira, J. J., Oppel, M., & González, L. (2015). Enhancing Intersystem Crossing in Phenotiazinium Dyes by Intercalation into DNA. Angewandte Chemie International Edition, 54(14), 4375-4378. doi:10.1002/anie.201411456 es_ES
dc.description.references Bosca, F., Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., & Miranda, M. A. (2006). The Triplet Energy of Thymine in DNA. Journal of the American Chemical Society, 128(19), 6318-6319. doi:10.1021/ja060651g es_ES
dc.description.references Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., Bosca, F., & Miranda, M. A. (2007). Triplet Excited Fluoroquinolones as Mediators for Thymine Cyclobutane Dimer Formation in DNA. The Journal of Physical Chemistry B, 111(25), 7409-7414. doi:10.1021/jp070167f es_ES
dc.description.references Rahn, R. O., Shulman, R. G., & Longworth, J. W. (1966). Phosphorescence and Electron Spin Resonance Studies of the uv‐Excited Triplet State of DNA. The Journal of Chemical Physics, 45(8), 2955-2965. doi:10.1063/1.1728051 es_ES
dc.description.references Koga, H., Itoh, A., Murayama, S., Suzue, S., & Irikura, T. (1980). Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. Journal of Medicinal Chemistry, 23(12), 1358-1363. doi:10.1021/jm00186a014 es_ES
dc.description.references Soldevila, S., Consuelo Cuquerella, M., Lhiaubet-Vallet, V., Edge, R., & Bosca, F. (2014). Seeking the mechanism responsible for fluoroquinolone photomutagenicity: a pulse radiolysis, steady-state, and laser flash photolysis study. Free Radical Biology and Medicine, 67, 417-425. doi:10.1016/j.freeradbiomed.2013.11.027 es_ES
dc.description.references Alfredson, T. V., Maki, A. H., & Waring, M. J. (1991). Optically detected triplet-state magnetic resonance studies of the DNA complexes of the bisquinoline analog of echinomycin. Biochemistry, 30(40), 9665-9675. doi:10.1021/bi00104a014 es_ES
dc.description.references Alfredson, T. V., & Maki, A. H. (1990). Phosphorescence and optically detected magnetic resonance studies of echinomycin-DNA complexes. Biochemistry, 29(38), 9052-9064. doi:10.1021/bi00490a024 es_ES
dc.description.references Albini, A., & Monti, S. (2003). Photophysics and photochemistry of fluoroquinolones. Chemical Society Reviews, 32(4), 238. doi:10.1039/b209220b es_ES
dc.description.references Cuquerella, M. C., Andreu, I., Soldevila, S., & Bosca, F. (2012). Triplet Excimers of Fluoroquinolones in Aqueous Media. The Journal of Physical Chemistry A, 116(21), 5030-5038. doi:10.1021/jp301800q es_ES
dc.description.references A Thermodynamic Study on the Interaction of Quinolone Antibiotics and DNA. (2009). Bulletin of the Korean Chemical Society, 30(5), 1031-1034. doi:10.5012/bkcs.2009.30.5.1031 es_ES
dc.description.references Grabowski, Z. R., Rotkiewicz, K., & Rettig, W. (2003). Structural Changes Accompanying Intramolecular Electron Transfer:  Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chemical Reviews, 103(10), 3899-4032. doi:10.1021/cr940745l es_ES
dc.description.references Cuquerella, M. C., Miranda, M. A., & Bosca, F. (2006). Role of Excited State Intramolecular Charge Transfer in the Photophysical Properties of Norfloxacin and Its Derivatives. The Journal of Physical Chemistry A, 110(8), 2607-2612. doi:10.1021/jp0559837 es_ES
dc.description.references Bosca, F. (2012). Seeking to Shed Some Light on the Binding of Fluoroquinolones to Albumins. The Journal of Physical Chemistry B, 116(11), 3504-3511. doi:10.1021/jp208930q es_ES
dc.description.references Encinas, S., Miranda, M. A., Marconi, G., & Monti, S. (1998). Triplet Photoreactivity of the Diaryl Ketone Tiaprofenic Acid and Its Decarboxylated Photoproduct. Photobiological Implications. Photochemistry and Photobiology, 67(4), 420-425. doi:10.1111/j.1751-1097.1998.tb05221.x es_ES
dc.description.references Su, T., Li, M.-D., Ma, J., Wong, N., & Phillips, D. L. (2014). Femtosecond Transient Absorption Spectroscopy Study of the Early Events of Norfloxacin in Aqueous Solutions with Varying pH Values. The Journal of Physical Chemistry B, 118(47), 13458-13467. doi:10.1021/jp506711f es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem