Mostrar el registro sencillo del ítem
dc.contributor.author | Cuquerella Alabort, Maria Consuelo | es_ES |
dc.contributor.author | Lhiaubet, Virginie Lyria | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Bosca Mayans, Francisco | es_ES |
dc.date.accessioned | 2018-10-31T05:32:28Z | |
dc.date.available | 2018-10-31T05:32:28Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1463-9076 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/111604 | |
dc.description.abstract | [EN] The crucial role of photosensitizer@DNA complexation in the formation of cyclobutane pyrimidine dimers (CPDs) has been demonstrated using femtosecond and nanosecond transient absorption and emission measurements in combination with in vitro DNA damage assays. This finding opens the door to re-evaluate the mechanisms involved in CPDs photosensitized by other chemicals. | es_ES |
dc.description.sponsorship | Spanish Government (CTQ2014-54729-C2-2-P, CTQ2015-70164-P and Severo Ochoa program/SEV-2012-0267) and Generalitat Valenciana (Prometeo II program) are gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Drug-DNA complexation as the key factor in photosensitized thymine dimerization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c6cp08485k | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2014-54729-C2-2-P/ES/DISEÑO DE NUEVAS PRODROGAS ANTICANCERIGENAS FOTOACTIVABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Cuquerella Alabort, MC.; Lhiaubet, VL.; Miranda Alonso, MÁ.; Bosca Mayans, F. (2017). Drug-DNA complexation as the key factor in photosensitized thymine dimerization. Physical Chemistry Chemical Physics. 19(7):4951-4955. https://doi.org/10.1039/c6cp08485k | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c6cp08485k | es_ES |
dc.description.upvformatpinicio | 4951 | es_ES |
dc.description.upvformatpfin | 4955 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\325620 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Branzei, D., & Foiani, M. (2008). Regulation of DNA repair throughout the cell cycle. Nature Reviews Molecular Cell Biology, 9(4), 297-308. doi:10.1038/nrm2351 | es_ES |
dc.description.references | Cadet, J., Grand, A., & Douki, T. (2014). Solar UV Radiation-Induced DNA Bipyrimidine Photoproducts: Formation and Mechanistic Insights. Topics in Current Chemistry, 249-275. doi:10.1007/128_2014_553 | es_ES |
dc.description.references | Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088h | es_ES |
dc.description.references | Beukers, R., Eker, A. P. M., & Lohman, P. H. M. (2008). 50 years thymine dimer. DNA Repair, 7(3), 530-543. doi:10.1016/j.dnarep.2007.11.010 | es_ES |
dc.description.references | Schreier, W. J., Gilch, P., & Zinth, W. (2015). Early Events of DNA Photodamage. Annual Review of Physical Chemistry, 66(1), 497-519. doi:10.1146/annurev-physchem-040214-121821 | es_ES |
dc.description.references | Schreier, W. J., Schrader, T. E., Koller, F. O., Gilch, P., Crespo-Hernandez, C. E., Swaminathan, V. N., … Kohler, B. (2007). Thymine Dimerization in DNA Is an Ultrafast Photoreaction. Science, 315(5812), 625-629. doi:10.1126/science.1135428 | es_ES |
dc.description.references | Banyasz, A., Douki, T., Improta, R., Gustavsson, T., Onidas, D., Vayá, I., … Markovitsi, D. (2012). Electronic Excited States Responsible for Dimer Formation upon UV Absorption Directly by Thymine Strands: Joint Experimental and Theoretical Study. Journal of the American Chemical Society, 134(36), 14834-14845. doi:10.1021/ja304069f | es_ES |
dc.description.references | Kwok, W.-M., Ma, C., & Phillips, D. L. (2008). A Doorway State Leads to Photostability or Triplet Photodamage in Thymine DNA. Journal of the American Chemical Society, 130(15), 5131-5139. doi:10.1021/ja077831q | es_ES |
dc.description.references | Schreier, W. J., Kubon, J., Regner, N., Haiser, K., Schrader, T. E., Zinth, W., … Gilch, P. (2009). Thymine Dimerization in DNA Model Systems: Cyclobutane Photolesion Is Predominantly Formed via the Singlet Channel. Journal of the American Chemical Society, 131(14), 5038-5039. doi:10.1021/ja900436t | es_ES |
dc.description.references | Pilles, B. M., Bucher, D. B., Liu, L., Clivio, P., Gilch, P., Zinth, W., & Schreier, W. J. (2014). Mechanism of the Decay of Thymine Triplets in DNA Single Strands. The Journal of Physical Chemistry Letters, 5(9), 1616-1622. doi:10.1021/jz500364g | es_ES |
dc.description.references | Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p | es_ES |
dc.description.references | Serrano-Pérez, J. J., González-Ramírez, I., Coto, P. B., Merchán, M., & Serrano-Andrés, L. (2008). Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine. The Journal of Physical Chemistry B, 112(45), 14096-14098. doi:10.1021/jp806794x | es_ES |
dc.description.references | Zhang, R. B., & Eriksson, L. A. (2006). A Triplet Mechanism for the Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA. The Journal of Physical Chemistry B, 110(14), 7556-7562. doi:10.1021/jp060196a | es_ES |
dc.description.references | Law, Y. K., Forties, R. A., Liu, X., Poirier, M. G., & Kohler, B. (2013). Sequence-dependent thymine dimer formation and photoreversal rates in double-stranded DNA. Photochemical & Photobiological Sciences, 12(8), 1431. doi:10.1039/c3pp50078k | es_ES |
dc.description.references | Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e | es_ES |
dc.description.references | Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d | es_ES |
dc.description.references | Nogueira, J. J., Oppel, M., & González, L. (2015). Enhancing Intersystem Crossing in Phenotiazinium Dyes by Intercalation into DNA. Angewandte Chemie International Edition, 54(14), 4375-4378. doi:10.1002/anie.201411456 | es_ES |
dc.description.references | Bosca, F., Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., & Miranda, M. A. (2006). The Triplet Energy of Thymine in DNA. Journal of the American Chemical Society, 128(19), 6318-6319. doi:10.1021/ja060651g | es_ES |
dc.description.references | Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., Bosca, F., & Miranda, M. A. (2007). Triplet Excited Fluoroquinolones as Mediators for Thymine Cyclobutane Dimer Formation in DNA. The Journal of Physical Chemistry B, 111(25), 7409-7414. doi:10.1021/jp070167f | es_ES |
dc.description.references | Rahn, R. O., Shulman, R. G., & Longworth, J. W. (1966). Phosphorescence and Electron Spin Resonance Studies of the uv‐Excited Triplet State of DNA. The Journal of Chemical Physics, 45(8), 2955-2965. doi:10.1063/1.1728051 | es_ES |
dc.description.references | Koga, H., Itoh, A., Murayama, S., Suzue, S., & Irikura, T. (1980). Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. Journal of Medicinal Chemistry, 23(12), 1358-1363. doi:10.1021/jm00186a014 | es_ES |
dc.description.references | Soldevila, S., Consuelo Cuquerella, M., Lhiaubet-Vallet, V., Edge, R., & Bosca, F. (2014). Seeking the mechanism responsible for fluoroquinolone photomutagenicity: a pulse radiolysis, steady-state, and laser flash photolysis study. Free Radical Biology and Medicine, 67, 417-425. doi:10.1016/j.freeradbiomed.2013.11.027 | es_ES |
dc.description.references | Alfredson, T. V., Maki, A. H., & Waring, M. J. (1991). Optically detected triplet-state magnetic resonance studies of the DNA complexes of the bisquinoline analog of echinomycin. Biochemistry, 30(40), 9665-9675. doi:10.1021/bi00104a014 | es_ES |
dc.description.references | Alfredson, T. V., & Maki, A. H. (1990). Phosphorescence and optically detected magnetic resonance studies of echinomycin-DNA complexes. Biochemistry, 29(38), 9052-9064. doi:10.1021/bi00490a024 | es_ES |
dc.description.references | Albini, A., & Monti, S. (2003). Photophysics and photochemistry of fluoroquinolones. Chemical Society Reviews, 32(4), 238. doi:10.1039/b209220b | es_ES |
dc.description.references | Cuquerella, M. C., Andreu, I., Soldevila, S., & Bosca, F. (2012). Triplet Excimers of Fluoroquinolones in Aqueous Media. The Journal of Physical Chemistry A, 116(21), 5030-5038. doi:10.1021/jp301800q | es_ES |
dc.description.references | A Thermodynamic Study on the Interaction of Quinolone Antibiotics and DNA. (2009). Bulletin of the Korean Chemical Society, 30(5), 1031-1034. doi:10.5012/bkcs.2009.30.5.1031 | es_ES |
dc.description.references | Grabowski, Z. R., Rotkiewicz, K., & Rettig, W. (2003). Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chemical Reviews, 103(10), 3899-4032. doi:10.1021/cr940745l | es_ES |
dc.description.references | Cuquerella, M. C., Miranda, M. A., & Bosca, F. (2006). Role of Excited State Intramolecular Charge Transfer in the Photophysical Properties of Norfloxacin and Its Derivatives. The Journal of Physical Chemistry A, 110(8), 2607-2612. doi:10.1021/jp0559837 | es_ES |
dc.description.references | Bosca, F. (2012). Seeking to Shed Some Light on the Binding of Fluoroquinolones to Albumins. The Journal of Physical Chemistry B, 116(11), 3504-3511. doi:10.1021/jp208930q | es_ES |
dc.description.references | Encinas, S., Miranda, M. A., Marconi, G., & Monti, S. (1998). Triplet Photoreactivity of the Diaryl Ketone Tiaprofenic Acid and Its Decarboxylated Photoproduct. Photobiological Implications. Photochemistry and Photobiology, 67(4), 420-425. doi:10.1111/j.1751-1097.1998.tb05221.x | es_ES |
dc.description.references | Su, T., Li, M.-D., Ma, J., Wong, N., & Phillips, D. L. (2014). Femtosecond Transient Absorption Spectroscopy Study of the Early Events of Norfloxacin in Aqueous Solutions with Varying pH Values. The Journal of Physical Chemistry B, 118(47), 13458-13467. doi:10.1021/jp506711f | es_ES |