- -

Subtle variations in polymer chemistry modulates substrate stiffness and fibronectin activity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Subtle variations in polymer chemistry modulates substrate stiffness and fibronectin activity

Mostrar el registro completo del ítem

Brizuela Guerra, N.; González-García, C.; Llopis, V.; Rodriguez-Hernandez, JC.; Moratal, D.; Rico Tortosa, PM.; Salmerón Sánchez, M. (2010). Subtle variations in polymer chemistry modulates substrate stiffness and fibronectin activity. Soft Matter. 6(19):4748-4755. https://doi.org/10.1039/c0sm00074d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/111804

Ficheros en el ítem

Metadatos del ítem

Título: Subtle variations in polymer chemistry modulates substrate stiffness and fibronectin activity
Autor: Brizuela Guerra, Nayrim González-García, Cristina Llopis, Virginia Rodriguez-Hernandez, Jose Carlos Moratal, David Rico Tortosa, Patricia María Salmerón Sánchez, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] A family of polymer substrates which consists of a vinyl backbone chain with the side groups ¿COO(CH2)xCH3, with x ¿ 0, 1, 3, 5 was prepared. Substrates with decreasing stiffness, characterised by the elastic modulus ...[+]
Derechos de uso: Cerrado
Fuente:
Soft Matter. (issn: 1744-683X )
DOI: 10.1039/c0sm00074d
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c0sm00074d
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/
Agradecimientos:
The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is kindly acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, ...[+]
Tipo: Artículo

References

Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697

Schwarz, U. S., & Bischofs, I. B. (2005). Physical determinants of cell organization in soft media. Medical Engineering & Physics, 27(9), 763-772. doi:10.1016/j.medengphy.2005.04.007

SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x [+]
Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697

Schwarz, U. S., & Bischofs, I. B. (2005). Physical determinants of cell organization in soft media. Medical Engineering & Physics, 27(9), 763-772. doi:10.1016/j.medengphy.2005.04.007

SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x

Werner, C., Pompe, T., & Salchert, K. (2006). Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 63-93. doi:10.1007/12_089

García, A. J. (s. f.). Interfaces to Control Cell-Biomaterial Adhesive Interactions. Advances in Polymer Science, 171-190. doi:10.1007/12_071

Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49(2), 155-166. doi:10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j

Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6

Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2(11), 793-805. doi:10.1038/35099066

Anderson, J. M. (2001). Biological Responses to Materials. Annual Review of Materials Research, 31(1), 81-110. doi:10.1146/annurev.matsci.31.1.81

Wong, J. Y., Leach, J. B., & Brown, X. Q. (2004). Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surface Science, 570(1-2), 119-133. doi:10.1016/j.susc.2004.06.186

Gray, D. S., Tien, J., & Chen, C. S. (2003). Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. Journal of Biomedical Materials Research, 66A(3), 605-614. doi:10.1002/jbm.a.10585

Genes, N. G., Rowley, J. A., Mooney, D. J., & Bonassar, L. J. (2004). Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Archives of Biochemistry and Biophysics, 422(2), 161-167. doi:10.1016/j.abb.2003.11.023

Schneider, A., Francius, G., Obeid, R., Schwinté, P., Hemmerlé, J., Frisch, B., … Picart, C. (2006). Polyelectrolyte Multilayers with a Tunable Young’s Modulus:  Influence of Film Stiffness on Cell Adhesion. Langmuir, 22(3), 1193-1200. doi:10.1021/la0521802

Ryan, P. L., Foty, R. A., Kohn, J., & Steinberg, M. S. (2001). Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proceedings of the National Academy of Sciences, 98(8), 4323-4327. doi:10.1073/pnas.071615398

Wong, J. Y., Velasco, A., Rajagopalan, P., & Pham, Q. (2003). Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels†. Langmuir, 19(5), 1908-1913. doi:10.1021/la026403p

Lo, C.-M., Wang, H.-B., Dembo, M., & Wang, Y. (2000). Cell Movement Is Guided by the Rigidity of the Substrate. Biophysical Journal, 79(1), 144-152. doi:10.1016/s0006-3495(00)76279-5

Bischofs, I. B., & Schwarz, U. S. (2003). Cell organization in soft media due to active mechanosensing. Proceedings of the National Academy of Sciences, 100(16), 9274-9279. doi:10.1073/pnas.1233544100

Schwarz, U. (2007). Soft matters in cell adhesion: rigidity sensing on soft elastic substrates. Soft Matter, 3(3), 263-266. doi:10.1039/b606409d

Choquet, D., Felsenfeld, D. P., & Sheetz, M. P. (1997). Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages. Cell, 88(1), 39-48. doi:10.1016/s0092-8674(00)81856-5

Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7(4), 265-275. doi:10.1038/nrm1890

Discher, D. E. (2005). Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science, 310(5751), 1139-1143. doi:10.1126/science.1116995

Harjanto, D., & Zaman, M. H. (2010). Matrix mechanics and receptor–ligand interactions in cell adhesion. Org. Biomol. Chem., 8(2), 299-304. doi:10.1039/b913064k

Pelham, R. J., & Wang, Y. -l. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences, 94(25), 13661-13665. doi:10.1073/pnas.94.25.13661

Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076

Altankov, G., Thom, V., Groth, T., Jankova, K., Jonsson, G., & Ulbricht, M. (2000). Modulating the biocompatibility of polymer surfaces with poly(ethylene glycol): Effect of fibronectin. Journal of Biomedical Materials Research, 52(1), 219-230. doi:10.1002/1097-4636(200010)52:1<219::aid-jbm28>3.0.co;2-f

García, A. (1999). Integrin–fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials, 20(23-24), 2427-2433. doi:10.1016/s0142-9612(99)00170-2

Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044

Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102

Barrias, C. C., Martins, M. C. L., Almeida-Porada, G., Barbosa, M. A., & Granja, P. L. (2009). The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 30(3), 307-316. doi:10.1016/j.biomaterials.2008.09.048

Khatiwala, C. B., Peyton, S. R., & Putnam, A. J. (2006). Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. American Journal of Physiology-Cell Physiology, 290(6), C1640-C1650. doi:10.1152/ajpcell.00455.2005

Kong, H. J., Polte, T. R., Alsberg, E., & Mooney, D. J. (2005). FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proceedings of the National Academy of Sciences, 102(12), 4300-4305. doi:10.1073/pnas.0405873102

Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062

Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537

Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203

Gugutkov, D., Altankov, G., Rodríguez Hernández, J. C., Monleón Pradas, M., & Salmerón Sánchez, M. (2010). Fibronectin activity on substrates with controlled OH density. Journal of Biomedical Materials Research Part A, 92A(1), 322-331. doi:10.1002/jbm.a.32374

Bae, Y. H., Johnson, P. A., Florek, C. A., Kohn, J., & Moghe, P. V. (2006). Minute changes in composition of polymer substrates produce amplified differences in cell adhesion and motility via optimal ligand conditioning. Acta Biomaterialia, 2(5), 473-482. doi:10.1016/j.actbio.2006.04.001

Nicolas, A., Geiger, B., & Safran, S. A. (2004). Cell mechanosensitivity controls the anisotropy of focal adhesions. Proceedings of the National Academy of Sciences, 101(34), 12520-12525. doi:10.1073/pnas.0403539101

Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., … Geiger, B. (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 3(5), 466-472. doi:10.1038/35074532

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem