- -

Current Bioengineering and Regenerative Strategies for the Generation of Kidney Grafts on Demand

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Current Bioengineering and Regenerative Strategies for the Generation of Kidney Grafts on Demand

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Dominguez, X. es_ES
dc.contributor.author Vicente Antón, José Salvador es_ES
dc.contributor.author Vera Donoso, Cesar David es_ES
dc.contributor.author Marco-Jiménez, Francisco es_ES
dc.date.accessioned 2018-11-09T05:34:38Z
dc.date.available 2018-11-09T05:34:38Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1527-2737 es_ES
dc.identifier.uri http://hdl.handle.net/10251/112165
dc.description.abstract [EN] Currently in the USA, one name is added to the organ transplant waiting list every 15 min. As this list grows rapidly, fewer than one-third of waiting patients can receive matched organs from donors. Unfortunately, many patients who require a transplant have to wait for long periods of time, and many of them die before receiving the desired organ. In the USA alone, over 100,000 patients are waiting for a kidney transplant. However, it is a problem that affects around 6% of the word population. Therefore, seeking alternative solutions to this problem is an urgent work. Here, we review the current promising regenerative technologies for kidney function replacement. Despite many approaches being applied in the different ways outlined in this work, obtaining an organ capable of performing complex functions such as osmoregulation, excretion or hormone synthesis is still a long-term goal. However, in the future, the efforts in these areas may eliminate the long waiting list for kidney transplants, providing a definitive solution for patients with end-stage renal disease. es_ES
dc.description.sponsorship This study was supported by a grant from ALCER-TURIA, ASTELLAS and PRECIPITA CROWDFUNDING.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Current Urology Reports es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Kidney disease es_ES
dc.subject Kidney engineering es_ES
dc.subject Blastocyst complementation es_ES
dc.subject Stem cells es_ES
dc.subject Kidney regeneration es_ES
dc.subject Decellularization es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.subject.classification BIOLOGIA ANIMAL es_ES
dc.title Current Bioengineering and Regenerative Strategies for the Generation of Kidney Grafts on Demand es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11934-017-0650-6 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Garcia-Dominguez, X.; Vicente Antón, JS.; Vera Donoso, CD.; Marco-Jiménez, F. (2017). Current Bioengineering and Regenerative Strategies for the Generation of Kidney Grafts on Demand. Current Urology Reports. 18(1):1-8. https://doi.org/10.1007/s11934-017-0650-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11934-017-0650-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 28092070
dc.relation.pasarela S\324349 es_ES
dc.contributor.funder Asociación para la lucha contra las enfermedades del riñón
dc.contributor.funder Astellas Pharma
dc.contributor.funder Fundación Española para la Ciencia y la Tecnología
dc.description.references Ott HC, Mathisen DJ. Bioartificial tissues and organs: are we ready to translate? Lancet. 2011;378:1977–8. es_ES
dc.description.references Salvatori M, Peloso A, Katari R, Orlando G. Regeneration and bioengineering of the kidney: current status and future challenges. Curr Urol Rep. 2014;15:379. es_ES
dc.description.references D’Agati VD. Growing new kidneys from embryonic cell suspensions: fantasy or reality? J Am Soc Nephrol. 2002;11:1763–6. es_ES
dc.description.references Abouna GM. Organ shortage crisis: problems and possible solutions. Transplant Proc. 2008;40:34–8. es_ES
dc.description.references Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60:691–9. es_ES
dc.description.references Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53. es_ES
dc.description.references Meeus F, Kourilsky O, Guerin AP, Gaudry C, Marchais SJ, London GM. Pathophysiology of cardiovascular disease in hemodialysis patients. Kidney Int Suppl. 2000;76:140–7. es_ES
dc.description.references Jofré R. Factores que afectan a la calidad de vida en pacientes en prediálisis, diálisis y trasplante renal. Nefrologia. 1999;19:84–90. es_ES
dc.description.references Villa G, Rodríguez-Carmona A, Fernández-Ortiz L, Cuervo J, Rebollo P, Otero A, et al. Cost analysis of the Spanish renal replacement therapy programme. Nephrol Dial Transplant. 2011;26:3709–14. es_ES
dc.description.references MJ C, Marshall D, Dilworth M, Bottomley M, Ashton N, Brenchley P. Immunosuppression is essential for successful allogeneic transplantation of the metanephroi. Transplantation. 2009;88:151–9. es_ES
dc.description.references Xinaris C, Yokoo T. Reforming the kidney starting from a single-cell suspension. Nephron Exp Nephrol. 2014;126:107. es_ES
dc.description.references Nguyen DM, El-Serag HB. The epidemiology of obesity. Gastroenterol Clin N Am. 2010;39:1–7. es_ES
dc.description.references Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51. es_ES
dc.description.references Hariharan K, Kurtz A, Schmidt-Ott KM. Assembling kidney tissues from cells: the long road from organoids to organs. Front Cell Dev Biol. 2015;3:70. es_ES
dc.description.references Montserrat N, Garreta E, Izpisua Belmonte JC. Regenerative strategies for kidney engineering, FEBS J. 2016; in press. doi: 10.1111/febs.13704 . es_ES
dc.description.references Hammerman MR. Transplantation of renal primordia: renal organogenesis. Pediatr Nephrol. 2007;22:1991–8. es_ES
dc.description.references Basma H, Soto-Gutiérrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990–9. es_ES
dc.description.references Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80. es_ES
dc.description.references Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 2003;107:1912–6. es_ES
dc.description.references Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38. es_ES
dc.description.references Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renström J, Lang R, et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008;3:85–98. es_ES
dc.description.references Yamanaka S, Yokoo T. Current bioengineering methods for whole kidney regeneration. Stem Cells Int. 2015;2015:724047. es_ES
dc.description.references Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol. 2013;15:1507–15. es_ES
dc.description.references Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67. es_ES
dc.description.references Simerman AA, Dumesic DA, Chazenbalk GD. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clin Transl Med. 2014;3:12. es_ES
dc.description.references Verdi J, Tan A, Shoae-Hassani A, Seifalian AM. Endometrial stem cells in regenerative medicine. J Biol Eng. 2014;8:20. es_ES
dc.description.references Maeshima A, Yamashita S, Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol. 2003;14:3138–46. es_ES
dc.description.references Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, et al. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol. 2006;17:2443–56. es_ES
dc.description.references Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. The renal papilla is a niche for adult kidney stem cells. J Clin Invest. 2004;114:795–804. es_ES
dc.description.references Kitamura S, Yamasaki Y, Kinomura M, Sugaya T, Sugiyama H, Maeshima Y, et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 2005;19:1789–97. es_ES
dc.description.references Kitamura S, Sakurai H, Makino H. Single adult kidney stem/progenitor cells reconstitute three-dimensional nephron structures in vitro. Stem Cells. 2015;33:774–84. es_ES
dc.description.references Li M, Suzuki K, Kim NY, Liu GH, Izpisua Belmonte JC. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J Biol Chem. 2014;289:4594–9. es_ES
dc.description.references Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715. es_ES
dc.description.references Hu J, Lei Y, Wong WK, Liu S, Lee KC, He X, et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. 2014;42:4375–90. es_ES
dc.description.references Den Hartogh SC, Schreurs C, Monshouwer-Kloots JJ, Davis RP, Elliott DA, Mummery CL, et al. Dual reporter MESP1 mCherry/w-NKX2-5 eGFP/w hESCs enable studying early human cardiac differentiation. Stem Cells. 2015;33:56–67. es_ES
dc.description.references Fukui A, Yokoo T. Kidney regeneration using developing xenoembryo. Curr Opin Organ Transplant. 2015;20:160–4. es_ES
dc.description.references Chen J, Lansford R, Stewart V, Young F, Alt FW. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci U S A. 1993;90:4528–32. es_ES
dc.description.references Ueno H, Turnbull BB, Weissman IL. Two-step oligoclonal development of male germ cells. Proc Natl Acad Sci U S A. 2009;106:175–80. es_ES
dc.description.references Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT, et al. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science. 2004;306:247–52. es_ES
dc.description.references Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142:787–99. es_ES
dc.description.references Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci U S A. 2013;110:4557–62. es_ES
dc.description.references Espejel S, Roll GR, McLaughlin KJ, Lee AY, Zhang JY, Laird DJ, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120:3120–6. es_ES
dc.description.references Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012;180:2417–26. es_ES
dc.description.references Aggarwal S, Moggio A, Bussolati B. Concise review: stem/progenitor cells for renal tissue repair: current knowledge and perspectives. Stem Cells Transl Med. 2013;2:1011–9. es_ES
dc.description.references Yokote S, Yokoo T. Organogenesis for kidney regeneration. Curr Opin Organ Transplant. 2013;18:186–90. es_ES
dc.description.references Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43. es_ES
dc.description.references Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403–30. es_ES
dc.description.references Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004;12:367–77. es_ES
dc.description.references Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28:3587–93. es_ES
dc.description.references Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21. es_ES
dc.description.references Yokoo T. Kidney regeneration with stem cells: an overview. Nephron Exp Nephrol. 2014;126(2):54. es_ES
dc.description.references Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814–20. es_ES
dc.description.references Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33. es_ES
dc.description.references Montserrat N, Garreta E, Izpisua Belmonte JC. Regenerative strategies for kidney engineering. FEBS J. 2016. doi: 10.1111/febs.13704 . es_ES
dc.description.references Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85. es_ES
dc.description.references Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8:013001. es_ES
dc.description.references Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34:422–34. es_ES
dc.description.references Uzarski JS, Xia Y, Belmonte JC, Wertheim JA. New strategies in kidney regeneration and tissue engineering. Curr Opin Nephrol Hypertens. 2014;23:399–405. es_ES
dc.description.references Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999;17:451–5. es_ES
dc.description.references Chevtchik NV, Fedecostante M, Jansen J, Mihajlovic M, Wilmer M, Rüth M, Masereeuw R, Stamatialis D. Upscaling of a living membrane for bioartificial kidney device. Eur J Pharmacol. 2016. es_ES
dc.description.references Humes HD, Sobota JT, Ding F, Song JH. A selective cytopheretic inhibitory device to treat the immunological dysregulation of acute and chronic renal failure. Blood Purif. 2010;29:183–90. es_ES
dc.description.references Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK, et al. Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol. 2008;19:1034–40. es_ES
dc.description.references Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci U S A. 2005;102(9):3296–300. es_ES
dc.description.references Yokoo T, Fukui A, Ohashi T, Miyazaki Y, Utsunomiya Y, Kawamura T, et al. Xenobiotic kidney organogenesis from human mesenchymal stem cells using a growing rodent embryo. J Am Soc Nephrol. 2006;17:1026–34. es_ES
dc.description.references Cooper DK. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent). 2012;25:49–57. es_ES
dc.description.references Costa MR, Fischer N, Gulich B, Tönjes RR. Comparison of porcine endogenous retroviruses infectious potential in supernatants of producer cells and in cocultures. Xenotransplantation. 2014;21:162–73. es_ES
dc.description.references Takeda S, Rogers SA, Hammerman MR. Differential origin for endothelial and mesangial cells after transplantation of pig fetal renal primordia into rats. Transpl Immunol. 2006;15:211–5. es_ES
dc.description.references Yasutomi Y. Establishment of specific pathogen-free macaque colonies in Tsukuba Primate Research Center of Japan for AIDS research. Vaccine. 2010;28:75–7. es_ES
dc.description.references Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, Aviel-Ronen S, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9:53–60. es_ES
dc.description.references Hammerman MR. Classic and current opinion in embryonic organ transplantation. Curr Opin Organ Transplant. 2014;19:133–9. es_ES
dc.description.references Rogers SA, Hammerman MR. Prolongation of life in anephric rats following de novo renal organogenesis. Organogenesis. 2004;1:22–5. es_ES
dc.description.references •• Yokote S, Matsunari H, Iwai S, Yamanaka S, Uchikura A, Fujimoto E, et al. Urine excretion strategy for stem cell-generated embryonic kidneys. Proc Natl Acad Sci U S A. 2015;112:12980–5. This manuscript describes the developed-metanephros ability to produce urine when it was connected to the excretory system of the recipient organism. They demonstrated the potential of this technique as a possible solution to the kidneys shortage. es_ES
dc.description.references Yokote S, Yokoo T, Matsumoto K, Utsunomiya Y, Kawamura T, Hosoya T. The effect of metanephroi transplantation on blood pressure in anephric rats with induced acute hypotension. Nephrol Dial Transplant. 2012;27:3449–55. es_ES
dc.description.references Matsumoto K, Yokoo T, Yokote S, Utsunomiya Y, Ohashi T, Hosoya T. Functional development of a transplanted embryonic kidney: effect of transplantation site. J Nephrol. 2012;25:50–5. es_ES
dc.description.references Yokote S, Yokoo T, Matsumoto K, Ohkido I, Utsunomiya Y, Kawamura T, et al. Metanephroi transplantation inhibits the progression of vascular calcification in rats with adenine-induced renal failure. Nephron Exp Nephrol. 2012;120:e32–40. es_ES
dc.description.references Matsumoto K, Yokoo T, Matsunari H, Iwai S, Yokote S, Teratani T, et al. Xeno‐transplanted embryonic kidney provides a niche for endogenous mesenchymal stem cell differentiation into erythropoietin-producing tissue. Stem Cells. 2012;30:1228–35. es_ES
dc.description.references Abrahamson DR. Glomerular development in intraocular and intrarenal graft of fetal kidney. Lab Investig. 1991;64:629–39. es_ES
dc.description.references Woolf AS, Palmer SJ, Snow ML, Fine LG. Creation of functioning chimeric mammalian kidney. Kidney Int. 1990;38:991–7. es_ES
dc.description.references Robert B, St John PL, Hyink DP, Abrahamson DR. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am J Physiol. 1996;271:F744–53. es_ES
dc.description.references Koseki C, Herzlinger D, Al-Awqati Q. Integration of embryonic nephrogenic cells carrying a reporter gene into functioning nephrons. Am J Physiol. 1991;261:C550–4. es_ES
dc.description.references Rogers SA, Lowell JA, Hammerman NA, Hammerman MR. Transplantation of developing metanephroi into adult rats. Kidney Int. 1998;54:27–37. es_ES
dc.description.references Barakat TL, Harrison RG. The capacity of fetal and neonatal renal tissues to regenerate and differentiate in a heterotropic allogenic subcutaneous tissue site in the rat. J Anat. 1971;110:393–407. es_ES
dc.description.references Rogers SA, Liapis H, Hammerman MR. Transplantation of metanephroi across the major histocompatibility complex in rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R132–6. es_ES
dc.description.references Vera-Donoso CD, García-Dominguez X, Jiménez-Trigos E, García-Valero L, Vicente JS, Marco-Jiménez F. Laparoscopic transplantation of metanephroi: a first step to kidney xenotransplantation. Actas Urol Esp. 2015;39:527–34. es_ES
dc.description.references •• Marco-Jiménez F, Garcia-Dominguez X, Jimenez-Trigos E, Vera-Donoso CD, Vicente JS. Vitrification of kidney precursors as a new source for organ transplantation. Cryobiology. 2015;70:278–82. This study found that it is possible to create a long-term biobank of kidney precursors as an unlimited source of organs for transplantation and open new therapeutic possibilities for the patients with chronic renal failure. es_ES
dc.description.references Garcia-Dominguez X, Vicente JS, Vera-Donoso C, Jimenez-Trigos E, Marco-Jiménez F. First steps towards organ banks: vitrification of renal primordia. CryoLetters. 2016;37:47–52. es_ES
dc.description.references •• García-Domínguez X, Vera-Donoso CD, García-Valero L, Vicente JS, Marco-Jiménez F. Embryonic organ transplantation: the new era of xenotransplantation. In: Abdeldayem H, El-Kased AF, El-Shaarawy A, editors. Frontiers in transplantology. 2016. pp. 26–46. This manuscript describes for the first time the protocol for transplantation of embryonic kidneys as an organ replacement therapy using laparoscopic surgery. es_ES
dc.description.references Bottomley MJ, Baicu S, Boggs JM, Marshall DP, Clancy M, Brockbank KG, et al. Preservation of embryonic kidneys for transplantation. Transplant Proc. 2005;37:280–4. es_ES
dc.description.references Hara J, Tottori J, Anders M, Dadhwal S, Asuri P, Mobed-Miremadi M. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells. Artif Cells Nanomed Biotechnol. 2016. doi: 10.3109/21691401.2016.1167698 . es_ES
dc.description.references Xu Y, Zhao G, Zhou X, Ding W, Shu Z, Gao D. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T). Cryobiology. 2014;68:294–302. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem