Mostrar el registro sencillo del ítem
dc.contributor.author | Bader, Philipp | es_ES |
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.contributor.author | Ponsoda Miralles, Enrique | es_ES |
dc.contributor.author | Seydaoglu, Muaz | es_ES |
dc.date.accessioned | 2018-11-14T21:01:57Z | |
dc.date.available | 2018-11-14T21:01:57Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/112490 | |
dc.description.abstract | [EN] We consider the numerical integration of the matrix Hill equation. Parametric resonances can appear and this property is of great interest in many different physical applications. Usually, Hill s equations originate from a Hamiltonian function and the fundamental matrix solution is a symplectic matrix. This is a very important property to be preserved by the numerical integrators. In this work we present new sixth-and eighth-order symplectic exponential integrators that are tailored to Hill s equation. The methods are based on an efficient symplectic approximation to the exponential of high dimensional coupled autonomous harmonic oscillators and yield accurate results for oscillatory problems at a low computational cost. The proposed methods can also be used for solving general second order linear differential equations where their performance will depend on how the methods are finally adapted to each particular problem or the qualitative properties one is interested to preserve. Several numerical examples illustrate the performance of the new methods. | es_ES |
dc.description.sponsorship | The authors thank the anonymous referees for criticism and comments which helped to clarify the present paper. PB and SB acknowledge the Ministerio de Economia y Competitividad (Spain) for financial support through the coordinated project MTM2013-46553-C3. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Matrix Hill equation | es_ES |
dc.subject | Mathieu equation | es_ES |
dc.subject | Parametric resonance | es_ES |
dc.subject | Symplectic integrators | es_ES |
dc.subject | Magnus expansion | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Symplectic integrators for the matrix Hill equation | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1016/j.cam.2016.09.041 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-46553-C3-3-P/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA. TEORIA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bader, P.; Blanes Zamora, S.; Ponsoda Miralles, E.; Seydaoglu, M. (2017). Symplectic integrators for the matrix Hill equation. Journal of Computational and Applied Mathematics. 316:47-59. https://doi.org/10.1016/j.cam.2016.09.041 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 14th Seminar on the Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF-14) | es_ES |
dc.relation.conferencedate | Septiembre 07-11,2015 | es_ES |
dc.relation.conferenceplace | Halle, Germany | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.cam.2016.09.041 | es_ES |
dc.description.upvformatpinicio | 47 | es_ES |
dc.description.upvformatpfin | 59 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 316 | es_ES |
dc.relation.pasarela | S\325881 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |