- -

Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones

Show full item record

Menezes, S.; Artico, S.; Lima, C.; Muniz, S.; Berbel Tornero, A.; Brilhante, O.; Grossi, M.... (2017). Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones. Plant Reproduction. 30(1):19-39. https://doi.org/10.1007/s00497-017-0297-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/113504

Files in this item

Item Metadata

Title: Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several ...[+]
Subjects: Gossypium hirsutum , MADS-box genes , Plant hormones , Gene expression , Reference genes , Reproductive development
Copyrigths: Cerrado
Source:
Plant Reproduction. (issn: 2194-7953 )
DOI: 10.1007/s00497-017-0297-y
Publisher:
Springer-Verlag
Publisher version: http://doi.org/10.1007/s00497-017-0297-y
Project ID: info:eu-repo/grantAgreement/EC/FP7/247587/EU
Thanks:
We thank Durvalina Felix and Alexandre Garcez by assist in samples preparation. We are grateful Fabia Guimaraes-Dias by valuable suggestions on the Manuscript. This work was supported by the Conselho Nacional de Desenvolvimento ...[+]
Type: Artículo

References

Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100:4649–4654. doi: 10.1073/pnas.0630618100

Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

Alvarez-Buylla ER, Pelaz S, Liljegren SJ et al (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97:5328–5333. doi: 10.1073/pnas.97.10.5328 [+]
Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100:4649–4654. doi: 10.1073/pnas.0630618100

Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

Alvarez-Buylla ER, Pelaz S, Liljegren SJ et al (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97:5328–5333. doi: 10.1073/pnas.97.10.5328

Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496

Angenent GC, Franken J, Busscher M et al (1993) Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J 4:101–112

Angenent GC, Franken J, Busscher M et al (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582. doi: 10.1105/tpc.7.10.1569

Artico S, Nardeli SM, Brilhante O et al (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49. doi: 10.1186/1471-2229-10-49

Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489. doi: 10.1016/S1055-7903(03)00207-0

Bézier A, Lambert B, Baillieul F (2002) Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120. doi: 10.1023/A:1015061108045

Bin Zhang H, Li Y, Wang B, Chee PW (2008) Recent advances in cotton genomics. Int J Plant Genomics. doi: 10.1155/2008/742304

Causier B, Castillo R, Zhou J et al (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr Biol 15:1508–1512. doi: 10.1016/j.cub.2005.07.063

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x

Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC, van Tunen AJ (1995) The petunia MADS Box gene FBP11 determines ovule ldentity. Plant Cell 7:1859–1868. doi: 10.1105/tpc.7.11.1859

Colombo L, Franken J, Van der Krol AR et al (1997) Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715. doi: 10.1105/tpc.9.5.703

Colombo M, Brambilla V, Marcheselli R et al (2010) A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Dev Biol 337:294–302. doi: 10.1016/j.ydbio.2009.10.043

Davies B, Motte P, Keck E et al (1999) PLENA and FARINELLI: Redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034. doi: 10.1093/emboj/18.14.4023

Dias BFO, Simões-Araújo JL, Russo CAM et al (2005) Unravelling MADS-box gene family in Eucalyptus spp.: a starting point to an understanding of their developmental role in trees. Genet Mol Biol 28:501–510. doi: 10.1590/S1415-47572005000400004

Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379. doi: 10.1093/emboj/18.19.5370

Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868

Favaro R, Pinyopich A, Battaglia R et al (2003) MADS-Box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611. doi: 10.1105/tpc.015123

Ferrándiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438. doi: 10.1126/science.289.5478.436

Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37. doi: 10.1093/nar/gkr367

Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:222–230. doi: 10.1093/nar/gkt1223

Gialvalis S, Seagull RW (2001) Plant hormones alter fiber initiation in unfertilized, cultured ovules of Gossypium hirsutum. J Cotton Sci 5:252–258 ST

Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:214. doi: 10.1186/gb-2010-11-6-214

Guan X, Lee JJ, Pang M et al (2011) Activation of arabidopsis seed hair development by cotton fiber-related genes. PLoS ONE. doi: 10.1371/journal.pone.0021301

Guénin S, Mauriat M, Pelloux J et al (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493. doi: 10.1093/jxb/ern305

Guo Y, Zhu Q, Zheng S, Li M (2007) Cloning of a MADS Box Gene (GhMADS3) from cotton and analysis of Its homeotic role in transgenic tobacco. J Genet Genom 34:527–535. doi: 10.1016/S1673-8527(07)60058-7

Heijmans K, Ament K, Rijpkema AS et al (2012) Redefining C and D in the petunia ABC. Plant Cell 24:2305–2317. doi: 10.1105/tpc.112.097030

Hellemans J, Mortier G, De Paepe A et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19. doi: 10.1186/gb-2007-8-2-r19

Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919

Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529. doi: 10.1038/35054083

Hovav R, Udall JA, Hovav E et al (2008) A majority of cotton genes are expressed in single-celled fiber. Planta 227:319–329. doi: 10.1007/s00425-007-0619-7

Jin X, Fu J, Dai S et al (2013) Reference gene selection for qPCR analysis in cineraria developing flowers. Sci Hortic (Amsterdam) 153:64–70. doi: 10.1016/j.scienta.2013.01.023

Kapoor M, Tsuda S, Tanaka Y et al (2002) Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. Plant J 32:115–127. doi: 10.1046/j.1365-313X.2002.01402.x

Kater MM, Colombo L, Franken J et al (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10:171–182. doi: 10.1105/tpc.10.2.171

Kim HJ, Hinchliffe DJ, Triplett BA et al (2015) Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS ONE 10:1–21. doi: 10.1371/journal.pone.0125046

Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS Subfamily of MADS Box genes in Angiosperms. Genetics 166:1011–1023. doi: 10.1534/genetics.166.2.1011

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:msw054. doi: 10.1093/molbev/msw054

Langer K, Ache P, Geiger D et al (2002) Poplar potassium transporters capable of controlling K + homeostasis and K + −dependent xylogenesis. Plant J 32:997–1009. doi: 10.1046/j.1365-313X.2002.01487.x

Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401. doi: 10.1093/aob/mcm232

Li Y, Ning H, Zhang Z et al (2011) A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation. Acta Biochim Biophys Sin (Shanghai) 43:607–617. doi: 10.1093/abbs/gmr055

Li F, Fan G, Wang K et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572

Lightfoot DJ, Malone KM, Timmis JN, Orford SJ (2008) Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells. Mol Genet Genom 279:75–85. doi: 10.1007/s00438-007-0297-y

Liljegren SJ, Ditta GS, Eshed Y et al (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

Liu X, Zuo K, Zhang F et al (2009) Identification and expression profile of GbAGL2, a C-class gene from Gossypium barbadense. J Biosci 34:941–951. doi: 10.1007/s12038-009-0108-1

Liu X, Zuo KJ, Xu JT et al (2010) Functional analysis of GbAGL1, a D-lineage gene from cotton (Gossypium barbadense). J Exp Bot 61:1193–1203. doi: 10.1093/jxb/erp388

Mansoor S, Paterson AH (2012) Genomes for jeans: cotton genomics for engineering superior fiber. Trends Biotechnol 30:521–527. doi: 10.1016/j.tibtech.2012.06.003

McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79. doi: 10.3389/fpls.2013.00079

Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene agamous in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914. doi: 10.1093/jxb/eri285

Oosterhuis DM, Cothren JT (2012) Flowering and fruiting in cotton, Number Eig. The Cotton Foundation Cordova, Tennessee

Pabón-Mora N, Wong GK-S, Ambrose BA (2014) Evolution of fruit development genes in flowering plants. Front Plant Sci 5:1–24. doi: 10.3389/fpls.2014.00300

Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi: 10.1093/nar/30.9.e36

Pinyopich A, Ditta GS, Savidge B et al (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88. doi: 10.1038/nature01741

Pontius JU, Wagner L, Schuler GD (2003) UniGene: a unified view of the transcriptome. NCBI Handb 1:1–12

Puranik S, Acajjaoui S, Conn S et al (2014) Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Plant Cell 26:3603–3615. doi: 10.1105/tpc.114.127910

Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101

Ritchie GL, Bednarz CW, Jost PH, Brown SM (2007) Cotton growth and development. University of Georgia Cooperative Extension Service Bulletim 1253. [A bulletim with practical information on cotton growth and development]. http://pubs.caes.uga.edu/caespubs/pubcd/B1252.htm

Robertson B, Bednarz C, Burmester C et al (2007) Growth and development—first 60 days. Cotton Physiology Today. Vol 13, Issue 2. National Cotton Council of Am. Memphis, TN

Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers, vol 132. NJ Humana Press, Totowa, pp 365–386. doi: 10.1385/1-59259-192-2:365

Ruan W, Lai M (2007) Actin, a reliable marker of internal control? Clin Chim Acta 385:1–5. doi: 10.1016/j.cca.2007.07.003

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees’. Mol Biol Evol 4:406–425

Seagull RW, Giavalis S (2004) Pre- and post anthesis application of exogenous hormones alters fiber production in G. hirsutum L. Cultivar MAXXA GTO. J Cotton Sci 111:105–111

Sun Y, Fokar M, Asami T et al (2004) Characterization of the Brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol 54:221–232. doi: 10.1023/B:PLAN.0000028788.96381.47

Sun Y, Veerabomma S, Abdel-Mageed HA et al (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46:1384–1391. doi: 10.1093/pcp/pci150

Thomas C, Meyer D, Wolff M et al (2003) Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Mol Biol 52:1025–1036

Tsuchimoto S, Van Der Krol AR, Chua N (1993) Ectopic expnession of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell 5:843–853

Waterhouse AM, Procter JB, Martin DMA et al (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi: 10.1093/bioinformatics/btp033

Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186. doi: 10.1016/s0065-2113(02)78004-8

Xiao YH, Li DM, Yin MH et al (2010) Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J Plant Physiol 167:829–837. doi: 10.1016/j.jplph.2010.01.003

Yang SS, Cheung F, Lee JJ et al (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775. doi: 10.1111/j.1365-313X.2006.02829.x

Yoo MJ, Wendel JF (2014) Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet. doi: 10.1371/journal.pgen.1004073

Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064. doi: 10.1089/cmb.2005.12.1047

[-]

This item appears in the following Collection(s)

Show full item record