- -

Direct creation of patient-specific Finite Element models from medical images and preoperative prosthetic implant simulation using h-adaptive Cartesian grids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Direct creation of patient-specific Finite Element models from medical images and preoperative prosthetic implant simulation using h-adaptive Cartesian grids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Ródenas García, Juan José es_ES
dc.contributor.advisor Tur Valiente, Manuel es_ES
dc.contributor.author Giovannelli, Luca es_ES
dc.date.accessioned 2018-12-12T07:29:50Z
dc.date.available 2018-12-12T07:29:50Z
dc.date.created 2018-11-06 es_ES
dc.date.issued 2018-12-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/113644
dc.description.abstract Se cree que la medicina in silico supondrá uno de los cambios más disruptivos en el futuro próximo. A lo largo de la última década se ha invertido un gran esfuerzo en el desarrollo de modelos computacionales predictivos para mejorar el poder de diagnóstico de los médicos y la efectividad de las terapias. Un punto clave de esta revolución, será la personalización, que conlleva en la mayoría de los casos, la creación de modelos computacionales específicos de paciente, también llamados gemelos digitales. Esta práctica está actualmente extendida en la investigación y existen en el mercado varias herramientas de software que permiten obtener modelos a partir de imágenes. A pesar de eso, para poderse usar en la práctica clínica, estos métodos se necesita reducir drásticamente el tiempo y el trabajo humano necesarios para la creación de los modelos numéricos. Esta tésis se centra en la propuesta de la versión basada en imágenes del Cartesian grid Finite Element Method (cgFEM), una técnica para obtener de forma automática modelos a partir de imágenes y llevar a cabo análisis estructurales lineales de huesos, implantes o materiales heterogéneos. En la técnica propuesta, tras relacionar la escala de los datos de la imágen con valores de propiedades mecánicas, se usa toda la información contenida en los píxeles para evaluar las matrices de rigidez de los elementos que homogenizan el comportamiento elástico de los grupos de píxeles contenidos en cada elemento. Se h-adapta una malla cartesiana inicialmente uniforme a las características de la imágen usando un procedimiento eficiente que tiene en cuenta las propiedades elásticas locales asociadas a los valores de los píxeles. Con eso, se evita un suavizado excesivo de las propiedades elásticas debido a la integración de los elementos en áreas altamente heterogéneas, pero, no obstante, se obtienen modelos finales con un número razonable de grados de libertad. El resultado de este proceso es una malla no conforme en la que se impone la continudad C0 de la solución mediante restricciones multi-punto en los hanging nodes. Contrariamente a los procedimientos estandar para la creación de modelos de Elementos Finitos a partir de imágenes, que normalmente requieren la definición completa y watertight de la geometrá y tratan el resultado como un CAD estandar, con cgFEM no es necesario definir ninguna entidad geométrica dado que el procedimiento propuesto conduce a una definición implícita de los contornos. Sin embargo, es inmediato incluirlas en el modelo en el caso de que sea necesario, como por ejemplo superficies suaves para imponer condiciones de contorno de forma más precisa o volúmenes CAD de dispositivos para la simulación de implantes. Como consecuencia de eso, la cantidad de trabajo humano para la creación de modelos se reduce drásticamente. En esta tesis, se analiza en detalles el comportamiento del nuevo método en problemas 2D y 3D a partir de CT-scan y radiográfias sintéticas y reales, centrandose en tres clases de problemas. Estos incluyen la simulación de huesos, la caracterización de materiales a partir de TACs, para lo cual se ha desarrollado la cgFEM virtual characterisation technique, y el análisis estructural de futuros implantes, aprovechando la capacidad del cgFEM de combinar fácilmente imágenes y modelos de CAD. es_ES
dc.description.abstract Es creu que la medicina in silico suposarà un dels canvis més disruptius en el futur pròxim. Al llarg de l'última dècada, s'ha invertit un gran esforç en el desenvolupament de models computacionals predictius per millorar el poder de diagnòstic dels metges i l'efectivitat de les teràpies. Un punt clau d'aquesta revolució, serà la personalització, que comporta en la majoria dels casos la creació de models computacionals específics de pacient. Aquesta pràctica està actualment estesa en la investigació i hi ha al mercat diversos software que permeten obtenir models a partir d'imatges. Tot i això, per a poder-se utilitzar en la pràctica clínica aquests métodes es necessita reduir dràsticament el temps i el treball humà necessaris per a la seva creació. Aquesta tesi es centra en la proposta d'una versió basada en imatges del Cartesian grid Finite Element Method (cgFEM), una técnica per obtenir de forma automàticament models a partir d'imatges i dur a terme anàlisis estructurals lineals d'ossos, implants o materials heterogenis. Després de relacionar l'escala del imatge a propietats macàniques corresponents, s'usa tota la informació continguda en els píxels per a integrar les matrius de rigidesa dels elements que homogeneïtzen el comportament elàstic dels grups de píxels continguts en cada element. Es emphh-adapta una malla inicialment uniforme a les característiques de la imatge usant un procediment eficient que té en compte les propietats elàstiques locals associades als valors dels píxels. Amb això, s'evita un suavitzat excessiu de les propietats elàstiques a causa de la integració dels elements en àrees altament heterogénies, però, tot i això, s'obtenen models finals amb un nombre raonable de graus de llibertat. El resultat d'aquest procés és una malla no conforme en la qual s'imposa la continuïtat C0 de la solució mitjançant restriccions multi-punt en els hanging nodes. Contràriament als procediments estàndard per a la creació de models d'Elements finits a partir d'imatges, que normalment requereixen la definició completa i watertight de la geometria i tracten el resultat com un CAD estàndard, amb cgFEM no cal definir cap entitat geométrica. No obstant això, és immediat incloure-les en el model en el cas que sigui necessari, com ara superfícies suaus per imposar condicions de contorn de forma més precisa o volums CAD de dispositius per a la simulació d'implants. Com a conseqüéncia d'això, la quantitat de treball humà per a la creació de models es redueix dràsticament. En aquesta tesi, s'analitza en detalls el comportament del nou métode en problemes 2D i 3D a partir de CT-scan i radiografies sintétiques i reals, centrant-se en tres classes de problemes. Aquestes inclouen la simulació d'ossos, la caracterització de materials a partir de TACs, per a la qual s'ha desenvolupat la cgFEM virtual characterisation technique, i l'anàlisi estructural de futurs implants, aprofitant la capacitat del cgFEM de combinar fàcilment imatges i models de CAD. ca_ES
dc.description.abstract In silico medicine is believed to be one of the most disruptive changes in the near future. A great effort has been carried out during the last decade to develop predicting computational models to increase the diagnostic capabilities of medical doctors and the effectiveness of therapies. One of the key points of this revolution, will be personalisation, which means in most of the cases creating patient specific computational models, also called digital twins. This practice is currently wide-spread in research and there are quite a few software products in the market to obtain models from images. Nevertheless, in order to be usable in the clinical practice, these methods have to drastically reduce the time and human intervention required for the creation of the numerical models. This thesis focuses on the proposal of image-based Cartesian grid Finite Element Method (cgFEM), a technique to automatically obtain numerical models from images and carry out linear structural analyses of bone, implants or heterogeneous materials. In the method proposed in this thesis, after relating the image scale to corresponding elastic properties, all the pixel information will be used for the integration of the element stiffness matrices, which homogenise the elastic behaviour of the groups of pixels contained in each element. An initial uniform Cartesian mesh is h-adapted to the image characteristics by using an efficient refinement procedure which takes into account the local elastic properties associated to the pixel values. Doing so we avoid an excessive elastic property smoothing due to element integration in highly heterogeneous areas, but, nonetheless obtain final models with a reasonable number of degrees of freedom. The result of the process is non-conforming mesh in which C0 continuity is enforced via multipoint constraints at the hanging nodes. In contrast to the standard procedures for the creation of Finite Element models from images, which usually require a complete and watertight definition of the geometry and treat the result as a standard CAD, with cgFEM it is not necessary to define any geometrical entity, as the procedure proposed leads to an implicit definition of the boundaries. Nonetheless, they are straightforward to include in the model if necessary, such as smooth surfaces to impose the boundary conditions more precisely or CAD device volumes for the simulation of implants. As a consequence, the amount of human work required for the creation of the numerical models is drastically reduced. In this thesis, we analyse in detail the new method behaviour in 2D and 3D problems from CT-scans and X-ray images and synthetic images, focusing on three classes of problems. These include the simulation of bones, the material characterisation of solid foams from CT scans, for which we developed the cgFEM virtual characterisation technique, and the structural analysis of future implants, taking advantage of the capability of cgFEM to easily mix images and CAD models. en_EN
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cartesian grid Finite Element method es_ES
dc.subject cgFEM es_ES
dc.subject Patient specific modelling es_ES
dc.subject Implant simulation es_ES
dc.subject Image based simulation es_ES
dc.subject cgFEM virtual characterization technique es_ES
dc.subject Numerical homogenization of elastic behavior es_ES
dc.subject Window method es_ES
dc.subject Implant natural frequencies es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Direct creation of patient-specific Finite Element models from medical images and preoperative prosthetic implant simulation using h-adaptive Cartesian grids es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/113644 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Giovannelli, L. (2018). Direct creation of patient-specific Finite Element models from medical images and preoperative prosthetic implant simulation using h-adaptive Cartesian grids [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113644 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\9989 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem