- -

The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues

Show simple item record

Files in this item

dc.contributor.author Čobanová, Klaudia es_ES
dc.contributor.author Chrastinová, Ľubica es_ES
dc.contributor.author Chrenková, Mária es_ES
dc.contributor.author Polačiková, Mária es_ES
dc.contributor.author Formelová, Zuzana es_ES
dc.contributor.author Ivanišinová, Oksana es_ES
dc.contributor.author Ryzner, Miroslav es_ES
dc.contributor.author Grešáková, Ľubomíra es_ES
dc.date.accessioned 2019-01-03T12:38:17Z
dc.date.available 2019-01-03T12:38:17Z
dc.date.issued 2018-09-28
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/114687
dc.description.abstract [EN] The purpose of this study was to compare the effect of dietary zinc from inorganic and organic sources on the concentration of Zn, Cu, Mn and Fe in plasma, tissues and faeces of rabbits. Simultaneously, the activities of total superoxide dismutase (SOD), specific Cu/Zn SOD, glutathione peroxidase (GPx), lipid peroxidation and total antioxidant capacity (TAC) in liver and kidney were also determined. Ninety-six 49-day-old broiler rabbits were allocated to 4 dietary treatments, each replicated 6 times with 4 animals per replicate. For the subsequent 6 wk, the rabbits were fed an identical basal diet (BD) supplemented with an equivalent dose of Zn (100 mg/kg) from different sources. Group 1 (control) received the unsupplemented BD, while the BD for groups 2, 3 and 4 was supplemented with Zn from Zn sulphate, Zn chelate of glycine hydrate (Zn-Gly) and Zn chelate of protein hydrolysate (Zn-Pro), respectively. The intake of dietary Zn sulphate resulted in an increase in Zn plasma concentration (1.85 vs. 1.48 mg/L; P<0.05) compared to the control group. Feeding the diets enriched with Zn increased the deposition of Zn in the liver (P<0.05), irrespective of the Zn source. The addition of Zn-Pro resulted in significantly higher Cu uptake in liver (P<0.05) than in the control and Zn sulphate group (56.0 vs. 35.0 and 36.7 mg/kg dry matter (DM), respectively). Neither Mn nor Fe concentration in plasma and tissues were affected by dietary Zn supplementation, with the exception of Fe deposition in muscle, which was significantly decreased (P<0.05) in rabbits supplemented with inorganic Zn sulphate compared to control and Zn-Gly group (9.8 vs. 13.3 and 12.2 mg/kg DM, respectively). Intake of organic Zn-Gly significantly increased the activities of total SOD (43.9 vs. 35.9 U/mg protein; P<0.05) and Cu/Zn SOD (31.1 vs. 23.8 U/mg protein; P<0.01) as well as TAC (37.8 vs. 31.2 μmol/g protein; P<0.05) in the kidney when compared to that of the control group. The presented results did not indicate any differences between dietary Zn sources in Zn deposition and measured antioxidant indices in rabbit tissues. Higher dietary Zn intake did not cause any interactions with respect to Mn, Cu and Fe deposition in liver and kidney tissues, but did increase the faecal mineral concentrations. Dietary organic Zn-Gly improved the antioxidant status in rabbit kidney. es_ES
dc.description.sponsorship This work was supported by the Slovak Research and Development Agency under contract nº. APVV-0667-12 and by the project ITMS 26220220204. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation APVV/APVV-0667-12
dc.relation APVV/ITMS 26220220204
dc.relation.ispartof World Rabbit Science
dc.rights Reserva de todos los derechos es_ES
dc.subject Zinc es_ES
dc.subject Rabbit es_ES
dc.subject Mineral concentration es_ES
dc.subject Antioxidant enzymes es_ES
dc.subject Lipid peroxidation es_ES
dc.title The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues es_ES
dc.type Artículo es_ES
dc.date.updated 2019-01-03T11:42:11Z
dc.identifier.doi 10.4995/wrs.2018.9206
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Čobanová, K.; Chrastinová, Ľ.; Chrenková, M.; Polačiková, M.; Formelová, Z.; Ivanišinová, O.; Ryzner, M.... (2018). The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues. World Rabbit Science. 26(3):241-248. doi:10.4995/wrs.2018.9206 es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2018.9206 es_ES
dc.description.upvformatpinicio 241 es_ES
dc.description.upvformatpfin 248 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26
dc.description.issue 3
dc.identifier.eissn 1989-8886
dc.contributor.funder Agentúra na Podporu Výskumu a Vývoja
dc.relation.references Alscher D.M., Braun N., Biegger D., Stuelten C., Gawronski K., Mürdter T.E., Kuhlmann U., Fritz P. 2005. Induction of metallothionein in proximal tubular cells by zinc and its potential as an endogenous antioxidant. Kidney Blood Press Res., 28: 127-133. https://doi.org/10.1159/000084921 es_ES
dc.relation.references Ao T., Pierce J.L., Power R., Pescatore A.J., Cantor A.H., Dawson K.A., Ford M.J. 2009. Effects of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poultry Sci., 88: 2171-2175. https://doi.org/10.3382/ps.2009-00117 es_ES
dc.relation.references AOAC 2005. Official Methods of Analysis. 18th Edition. Association of Official Analytical Chemists, Gaithersburg, USA. es_ES
dc.relation.references Bao Y.M., Choct M., Iji P.A., Brueton K. 2007. Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. J. Appl. Poult, Res., 16: 448-455. https://doi.org/10.1093/japr/16.3.448 es_ES
dc.relation.references Benzie I.F.F., Strain J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "Antioxidant Power": The FRAP Assay. Anal. Biochem., 239: 70-76. https://doi.org/10.1006/abio.1996.0292 es_ES
dc.relation.references Bulbul A.T., Bulbul S., Kucukersan M., Sireli M., Eryavuz A. 2008. Effect of dietary supplementation of organic and inorganic Zn, Cu and Mn on oxidant/antioxidant balance in laying hens. Kafkas Univ. Vet. Fak., 14: 19-24. es_ES
dc.relation.references Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem., 72: 248-254. es_ES
dc.relation.references https://doi.org/10.1016/0003-2697(76)90527-3 es_ES
dc.relation.references Casado C., Moya V.J., Pascual J.J., Blas E., Cervera C. 2011. Effect of oxidation state of dietary sunflower oil and dietary zinc and α-tocopheryl acetate supplementation on performance of growing rabbits. World Rabbit Sci., 19: 191-202. https://doi.org/10.4995/wrs.2011.940 es_ES
dc.relation.references Cortese M.M., Suschek C.V., Wetzel W., Kroncke K.D., Kolb-Bachofen V. 2008. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med., 44: 2002-2012. https://doi.org/10.1016/j.freeradbiomed.2008.02.013 es_ES
dc.relation.references Farombi E.O., Hansen M., Raven-Haren G., Moller P., Dragsted L.O. 2004. Commonly consumed and naturally occuring dietary substances affect biomarkers of oxidative stress and DNA damage in the healthy rats. Food Chem. Toxicol., 2: 15-22. es_ES
dc.relation.references Gresakova L., Venglovska K., Cobanova K. 2016. Dietary manganese source does not affect Mn, Zn and Cu tissue deposition and the activity of manganese-containing enzymes in lambs. J. Trace Elem. Med. Biol. 38: 138-143. https://doi.org/10.1016/j.jtemb.2016.05.003 es_ES
dc.relation.references Chrastinová Ľ., Čobanová K., Chrenková M., Poláčiková M., Formelová Z., Lauková A., Ondruška Ľ., Pogány Simonová M., Strompfová V., Mlyneková Z., Kalafová A., Grešáková Ľ. 2016. Effect of dietary zinc supplementation on nutrient digestibility and fermentation characteristics of caecal content in physiological experiment with young rabbits. Slovak J. Anim. Sci., 49: 23-31. es_ES
dc.relation.references Ivanišinová O., Grešáková Ľ., Ryzner M., Oceľová V., Čobanová K. 2016. Effects of feed supplementation with various zinc sources on mineral concentration and selected antioxidant indices in tissues and plasma of broiler chickens. Acta Vet. Brno, 85: 285-291. https://doi.org/10.2754/avb201685030285 es_ES
dc.relation.references Jo C., Ahn D.U. 1998. Fluorometric analysis of 2-thiobarbituric acid reactive substances in turkey. Poultry Sci., 77: 475-480. https://doi.org/10.1093/ps/77.3.475 es_ES
dc.relation.references King J.C., Brown K.H., Gibson R.S., Krebs N.F., Lowe N.M., Siekmann J.H., Raiten D.J. 2016. Biomarkers of nutrition for development (BOND) - Zinc review. J. Nutr., 146: 858S-885S. https://doi.org/10.3945/jn.115.220079 es_ES
dc.relation.references King J.C., Shames D.M., Woodhouse L.R. 2000. Zinc homeostasis in humans. J. Nutr., 130: 1360S-1366S. https://doi.org/10.1093/jn/130.5.1360S es_ES
dc.relation.references Kwiecien M., Winiarska-Mieczan A., Milczarek A., Klebaniuk R. 2017. Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biol. Trace Elem. Res., 175: 204-213. https://doi.org/10.1007/s12011-016-0743-y es_ES
dc.relation.references Ma W., Niu H., Feng J., Wang Y., Feng J. 2011. Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biol. Trace Elem. Res., 142: 546-556. https://doi.org/10.1007/s12011-010-8824-9 es_ES
dc.relation.references Marklund S., Marklund G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x es_ES
dc.relation.references Nessrin S., Abdel-Khalek A.M., Gad S.M. 2012. Effect of supplemental zinc, magnesium or iron on performance and some physiological traits of growing rabbits. Asian J. Poult. Sci., 6: 23-30. https://doi.org/10.3923/ajpsaj.2012.23.30 es_ES
dc.relation.references Nutritional Research Council (NRC), 1977. Nutrient requirements of rabbits. National Academies of Science, Washington DC, USA. es_ES
dc.relation.references Oteiza P.I. 2012. Zinc and the modulation of redox homeostasis. Free Radic. Biol. Med., 53: 1748-1759. https://doi.org/10.1016/j.freeradbiomed.2012.08.568 es_ES
dc.relation.references Paglia D.E., Valentine W.N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70: 158-169. es_ES
dc.relation.references Powell S.R. 2000. The antioxidant properties of zinc. J. Nutr., 130: 1447S-1454S. https://doi.org/10.1093/jn/130.5.1447S es_ES
dc.relation.references Salomonsson A.C., Theander O., Westerlund O. 1984. Chemical characterization of some Swedish cereals whole meal and bran fractions. Swedish J. Agric. Res. 14: 11-117. es_ES
dc.relation.references Skřivan M., Skřivanová V., Marounek M. 2005. Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage. Poultry Sci. 84: 1570-1575. https://doi.org/10.1093/ps/84.10.1570 es_ES
dc.relation.references Spears, J.W. 1996. Optimizing mineral levels and sources for farm animals. In Kornegay E.T. (ed). Nutrient Management of Food Animals to Enhance and Protect the Environment, CRC Press, Inc., Boca Raton, FL, 259-275. es_ES
dc.relation.references Sunder G.S., Kumar V.C., Panda A.K., Raju M.V.L.N., Rao S.V.R. 2013. Effect of supplemental organic Zn and Mn on broiler performance, bone measures, tissue mineral uptake and immune response at 35 d of age. Curr. Res. Poult. Sci., 3: 1-11. https://doi.org/10.3923/crpsaj.2013.1.11 es_ES
dc.relation.references Suttle N.F. 2010. Mineral nutrition of livestock, 4th Edition. CABI Publishing, Wallingford, Oxfordshire, UK. https://doi.org/10.1079/9781845934729.0000 es_ES
dc.relation.references Swiatkiewicz S., Arczewska-Wlosek A., Jozefiak D. 2014. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World Poultry Sci. J., 70:475-485. https://doi.org/10.1017/S0043933914000531 es_ES
dc.relation.references Van Soest P.J., Robertson J.B., Lewis B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Diary Sci., 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 es_ES
dc.relation.references Wiseman J., Villamide M.J., De Blas C., Carabaño M.J., Carabaño R.M. 1992. Prediction of the digestible energy and digestibility of gross energy of feed for rabbits. 1. Individual classes of feeds. Anim. Feed Sci. Technol., 39: 27-38. https://doi.org/10.1016/0377-8401(92)90029-6 es_ES
dc.relation.references Yan J.Y., Zhang G.W., Zhang C., Tang L., Kuang S.Y. 2017. Effect of dietary organic zinc sources on growth performance, incidence of diarrhoea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits. World Rabbit Sci., 25: 43-49. https://doi.org/10.4995/wrs.2017.5770 es_ES


This item appears in the following Collection(s)

Show simple item record