- -

Personality-based recommendation: human curiosity applied to recommendation systems using implicit information from social networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Personality-based recommendation: human curiosity applied to recommendation systems using implicit information from social networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Sebastiá Tarín, Laura es_ES
dc.contributor.author Menk Dos Santos, Alan es_ES
dc.date.accessioned 2019-01-07T16:12:31Z
dc.date.available 2019-01-07T16:12:31Z
dc.date.created 2018-12-03 es_ES
dc.date.issued 2019-06-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/114798
dc.description Tesis por compendio es_ES
dc.description.abstract En el día a día, las personas suelen confiar en recomendaciones, tradicionalmente aportadas por otras personas (familia, amigos, etc.) para sus decisiones más variadas. En el mundo digital esto no es diferente, dado que los sistemas de recomendación están presentes en todas partes y de modo transparente. El principal objetivo de estos sistemas es el de ayudar en el proceso de toma de decisiones, generando recomendaciones de su interés y basadas en sus gustos. Dichas recomendaciones van desde productos en sitios web de comercio electrónico, como libros o lugares a visitar, además de qué comer o cuánto tiempo uno debe caminar al día para tener una vida sana, con quién salir o a quién seguir en las redes sociales. Esta es un área en ascensión. Por un lado, tenemos cada vez más usuarios en internet cuya vida está digitalizada, dado que lo que se hace en el "mundo real" está representado en cierto modo en el "mundo digital". Por otro lado, sufrimos una sobrecarga de información, que puede mitigarse mediante el uso de un sistema de recomendación. Sin embargo, estos sistemas también enfrentan algunos problemas, como el problema del arranque en frío y su necesidad de ser cada vez más "humanos", "personalizados" y "precisos" para satisfacer las exigencias de usuarios y empresas. En este desafiante escenario, los sistemas de recomendación basados en la personalidad se están estudiando cada vez más, ya que son capaces de enfrentar esos problemas. Algunos proyectos recientes proponen el uso de la personalidad humana en los recomendadores, ya sea en su conjunto o individualmente por rasgos. Esta tesis está dedicada a este nuevo área de recomendación basada en la personalidad, centrándose en uno de sus rasgos más importantes, la curiosidad. Además, para explotar la información ya existente en internet, obtendremos de forma implícita información de las redes sociales. Por lo tanto, este trabajo tiene como objetivo proporcionar una mejor experiencia al usuario final a través de un nuevo enfoque que ofrece una alternativa a algunos de los retos identificados en los sistemas de recomendación basados en la personalidad. Entre estas mejoras, el uso de las redes sociales para alimentar los sistemas de recomendación reduce el problema del arranque en frío y, al mismo tiempo, proporciona datos valiosos para la predicción de la personalidad humana. Por otro lado, la curiosidad no ha sido utilizada por ninguno de los sistemas de recomendación estudiados; casi todos han usado la personalidad general de un individuo a través de los Cinco Grandes rasgos de la personalidad. Sin embargo, los estudios psicológicos confirman que la curiosidad es un rasgo relevante en el proceso de elegir un item, cuestión directamente relacionada con los sistemas de recomendación. En resumen, creemos que un sistema de recomendación que mida implícitamente la curiosidad y la utilice en el proceso de recomendar nuevos ítems, especialmente en el sector turístico, podría claramente mejorar la capacidad de estos sistemas en términos de precisión, serendipidad y novedad, permitiendo a los usuarios obtener niveles positivos de satisfacción con las recomendaciones. Esta tesis realiza un estudio exhaustivo del estado del arte, donde destacamos trabajos sobre sistemas de recomendación, la personalidad humana desde el punto de vista de la psicología tradicional y positiva y finalmente cómo se combinan ambos aspectos. Luego, desarrollamos una aplicación en línea capaz de extraer implícitamente información del perfil de usuario en una red social, generando predicciones de uno o más rasgos de su personalidad. Finalmente, desarrollamos el sistema CURUMIM, capaz de generar recomendaciones en línea con diferentes propiedades, combinando la curiosidad y algunas características sociodemográficas (como el nivel de educación) extraídas de Facebook. El sistema ha sido probado y evaluado en el contexto turístico por usuarios r es_ES
dc.description.abstract En el dia a dia, les persones solen confiar en recomanacions, tradicionalment aportades per altres persones (família, amics, etc.) per a les seues decisions més variades. En el món digital això no és diferent, atès que els sistemes de recomanació estan presents a tot arreu i de manera transparent. El principal objectiu d'aquests sistemes és el d'ajudar en el procés de presa de decisions, generant recomanacions del seu interès i basades en els seus gustos. Aquestes recomanacions van des de productes en pàgines web de comerç electrònic, com a llibres o llocs a visitar, a més de què menjar o quant temps una persona ha de caminar al dia per a tindre una vida sana, amb qui eixir o a qui seguir en les xarxes socials. Aquesta és una àrea en ascensió. D'una banda, tenim cada vegada més usuaris en internet la vida de les quals està digitalitzada, atès que el que es fa en el "món real" està representat en certa manera en el "món digital". D'altra banda, patim una sobrecàrrega d'informació, que pot mitigar-se mitjançant l'ús d'un sistema de recomanació. No obstant això, aquests sistemes també enfronten alguns problemes, com el problema de l'arrencada en fred i la seua necessitat de ser cada vegada més "humans", "personalitzats" i "precisos" per a satisfer les exigències d'usuaris i empreses. En aquest desafiador escenari, els sistemes de recomanació basats en la personalitat s'estan estudiant cada vegada més, ja que són capaços d'enfrontar eixos problemes. Alguns projectes recents proposen l'ús de la personalitat humana en els recomendadors, ja siga en el seu conjunt o individualment per trets. Aquesta tesi està dedicada a aquest nou àrea de recomanació basada en la personalitat, centrant-se en un dels seus trets més importants, la curiositat. A més, per a explotar la informació ja existent en internet, obtindrem de forma implícita informació de les xarxes socials. Per tant, aquest treball té com a objectiu proporcionar una millor experiència a l'usuari final a través d'un nou enfocament que ofereix una alternativa a alguns dels reptes identificats en els sistemes de recomanació basats en la personalitat. Entre aquestes millores, l'ús de les xarxes socials per a alimentar els sistemes de recomanació redueix el problema de l'arrencada en fred i, al mateix temps, proporciona dades valuoses per a la predicció de la personalitat humana. D'altra banda, la curiositat no ha sigut utilitzada per cap dels sistemes de recomanació estudiats; quasi tots han usat la personalitat general d'un individu a través dels Cinc Grans trets de la personalitat. No obstant això, els estudis psicològics confirmen que la curiositat és un tret rellevant en el procés de triar un item, qüestió directament relacionada amb els sistemes de recomanació. En resum, creiem que un sistema de recomanació que mesure implícitament la curiositat i la utilitze en el procés de recomanar nous ítems, especialment en el sector turístic, podria clarament millorar la capacitat d'aquests sistemes en termes de precisió, sorpresa i novetat, permetent als usuaris obtindre nivells positius de satisfacció amb les recomanacions. Aquesta tesi realitza un estudi exhaustiu de l'estat de l'art, on destaquem treballs sobre sistemes de recomanació, la personalitat humana des del punt de vista de la psicologia tradicional i positiva i finalment com es combinen tots dos aspectes. Després, desenvolupem una aplicació en línia capaç d'extraure implícitament informació del perfil d'usuari en una xarxa social, generant prediccions d'un o més trets de la seua personalitat. Finalment, desenvolupem el sistema CURUMIM, capaç de generar recomanacions en línia amb diferents propietats, combinant la curiositat i algunes característiques sociodemogràfiques (com el nivell d'educació) extretes de Facebook. El sistema ha sigut provat i avaluat en el context turístic per usuaris reals. Els resultats demostren la seua capacitat per ca_ES
dc.description.abstract In daily life, people usually rely on recommendations, traditionally given by other people (family, friends, etc.) for their most varied decisions. In the digital world, this is not different, given that recommender systems are present everywhere in such a way that we no longer realize. The main goal of these systems is to assist users in the decision-making process, generating recommendations that are of their interest and based on their tastes. These recommendations range from products in e-commerce websites, like books to read or places to visit to what to eat or how long one should walk a day to have a healthy life, who to date or who one should follow on social networks. And this is an increasing area. On the one hand, we have more and more users on the internet whose life is somewhat digitized, given than what one does in the "real world" is represented in a certain way in the "digital world". On the other hand, we suffer from information overload, which can be mitigated by the use of recommendation systems. However, these systems also face some problems, such as the cold start problem and their need to be more and more "human", "personalised" and "precise" in order to meet the yearning of users and companies. In this challenging scenario, personality-based recommender systems are being increasingly studied, since they are able to face these problems. Some recent projects have proposed the use of the human personality in recommenders, whether as a whole or individually by facet in order to meet those demands. Therefore, this thesis is devoted to this new area of personality-based recommendation, focusing on one of its most important traits, the curiosity. Additionally, in order to exploit the information already present on the internet, we will implicitly obtain information from social networks. Thus, this work aims to build a better experience for the end user through a new approach that offers an option for some of the gaps identified in personality-based recommendation systems. Among these gap improvements, the use of social networks to feed the recommender systems soften the cold start problem and, at the same time, it provides valuable data for the prediction of the human personality. Another found gap is that the curiosity was not used by any of the studied recommender systems; almost all of them have used the overall personality of an individual through the Big Five personality traits. However, psychological studies confirm that the curiosity is a relevant trait in the process of choosing an item, which is directly related to recommendation systems. In summary, we believe that a recommendation system that implicitly measures the curiosity and uses it in the process of recommending new items, especially in the tourism sector, could clearly improve the capacity of these systems in terms of accuracy, serendipity and novelty, allowing users to obtain positive levels of satisfaction with the recommendations. This thesis begins with an exhaustive study of the state of the art, where we highlight works about recommender systems, the human personality from the point of view of traditional and positive psychology and how these aspects are combined. Then, we develop an online application capable of implicitly extracting information from the user profile in a social network, thus generating predictions of one or more personality traits. Finally, we develop the CURUMIM system, able to generate online recommendations with different properties, combining the curiosity and some sociodemographic characteristics (such as level of education) extracted from Facebook. The system is tested and assessed within the tourism context by real users. The results demonstrate its ability to generate novel and serendipitous recommendations, while maintaining a good level of accuracy, independently of the degree of curiosity of the users. en_EN
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sistemas de Recomendación es_ES
dc.subject Personalidad es_ES
dc.subject Curiosidad es_ES
dc.subject Serendipidad es_ES
dc.subject Novedad es_ES
dc.subject Diversidad es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Personality-based recommendation: human curiosity applied to recommendation systems using implicit information from social networks es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/114798 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Menk Dos Santos, A. (2018). Personality-based recommendation: human curiosity applied to recommendation systems using implicit information from social networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/114798 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\10019 es_ES
dc.description.compendio Compendio es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem