Mostrar el registro sencillo del ítem
dc.contributor.author | Uribe, D. | es_ES |
dc.contributor.author | Mattar, C. | es_ES |
dc.contributor.author | Camacho, F. | es_ES |
dc.coverage.spatial | east=-71.54296899999997; north=-35.675147; name=Província de Linares, Regió del Maule, Xile | es_ES |
dc.date.accessioned | 2019-01-08T12:12:04Z | |
dc.date.available | 2019-01-08T12:12:04Z | |
dc.date.issued | 2018-12-26 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/114889 | |
dc.description | Revista oficial de la Asociación Española de Teledetección | |
dc.description.abstract | [EN] The estimation of the biophysical parameters of vegetation such as LAI (Leaf Area Index), FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) and FCOVER (Fraction of Green Vegetation) have many climatic, hydrologic, ecosystem and silvo-agricultural applications. Despite the various satellite products that estimate these parameters continuously and globally, it’s necessary to continue generating in situ estimations to validate these remote data. It’s in this context where Digital Hemispheric Photography (DHP) technique stands out as being one of the most accurate an adaptable to operate continuously with diverse photographic equipment and field scenarios. The objective of this paper is to estimate effective LAI (LAIeff), true LAI (LAItrue), FAPAR and FCOVER through the DHP method on several agricultural land covers in Chile, between the years 2015 and 2016 using a GoPro camera and the CAN-EYE software to process hemispheric photographs. The results obtained were initially compared with those provided by a CANON EOS 6D camera mounted together with a SIGMA 8mm F3.5-EX DG fisheye lens and subsequently with satellite products provided by the Copernicus Global Land service, derived from PROBA-V mission at 333 m2 spatial resolution. The comparison between the CANON and GoPro shows similar values and R2 over 0,72 for all parameters. The comparison with PROBA-V resulted in values over 0,52 of R2 for the parameters, and similar multitemporal patterns. It’s concluded that it’s possible to estimates LAIeff, FAPAR and FCOVER like other fish eyes cameras. Concerning PROBA-V, except for FAPAR, the estimates with the GoPro do not show much correlation. In both campaigns significant discrepancies were observed in the LAItrue, which could be related to the calculation of CAN-EYE canopy clumping with the characteristics of the camera itself. | es_ES |
dc.description.abstract | [ES] La estimación de los parámetros biofísicos de la vegetación como el LAI (Leaf Area Index, FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) y FCOVER (Fraction of Green Vegetation) tienen una gran cantidad de aplicaciones climáticas, hidrológicas, ecosistémicas y en sistemas silvoagropecuarios. A pesar de los diversos productos satelitales que estiman estos parámetros de forma continua y global, es necesario seguir generando estimaciones in situ para validar estos datos remotos. Es en este escenario en donde la técnica de Fotografía Digital Hemisférica (DHP) destaca por ser una de las más precisas y adaptables para funcionar de forma continua en diversos equipos fotográficos y escenarios de campo. El objetivo de este estudio es estimar el LAI efectivo (LAIeff), LAI verdadero (LAItrue), FAPAR y FCOVER a través del método DHP sobre diversas cubiertas agrícolas de Chile, entre los años 2015 y 2016 utilizando la cámara fotográfica GoPro y el software CAN-EYE para procesar las fotografías hemisféricas. Los resultados obtenidos se compararon inicialmente con los suministrados por una cámara CANON EOS 6D montada junto a un lente ojo de pez SIGMA 8mm F3.5-EX DG y posteriormente con productos satelitales proporcionados por el servicio Copernicus Global Land, derivado de la misión PROBA-V a 333 m2 de resolución espacial. La comparación entre las cámaras CANON y GoPro muestra estimaciones similares y valores de R2 sobre 0,72 para todos los parámetros. La comparación con PROBA-V dio lugar a valores sobre 0,52 de R2 para los parámetros y estimaciones multitemporales con patrones similares. Se concluye que con la cámara GoPro, es posible generar estimaciones de LAIeff, FAPAR y FCOVER de forma similar a otras cámaras ojos de pez. Respecto a PROBA-V, a excepción de FAPAR, las estimaciones con la GoPro no muestran mucha correlación. En ambas campañas se observaron discrepancias significativas del LAItrue lo que se podría relacionar al cálculo del agrupamiento de la canopia de CAN-EYE sobre las características propia cámara. | es_ES |
dc.description.sponsorship | Los autores agradecen el financiamiento parcial del proyecto Conicyt – Fondecyt Iniciación 11130359 “Estimating the Surface soil moisture at regional scale by using a synergic optical-passive microwave approach and remote sensing data”. Al Earth Observation Laboratory (EOLAB) y al proyecto IMAGINES, junto con la libre entrega de datos PROBA-V Copernicus | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Revista de Teledetección | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | GoPro | es_ES |
dc.subject | Parámetros Biofísicos de la Vegetación | es_ES |
dc.subject | DHP | es_ES |
dc.subject | Vegetation Biophysical Parameters | es_ES |
dc.title | Estimación de parámetros biofísicos de la vegetación en praderas y cultivos en Chile mediante fotografía digital hemisférica obtenidas por una cámara GoPro | es_ES |
dc.title.alternative | Estimation of vegetation biophysical parameters in grasslands and crops in Chile through hemispheric digital photography by a GoPro camera | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-01-08T12:03:33Z | |
dc.identifier.doi | 10.4995/raet.2018.9315 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICYT//11130359/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Uribe, D.; Mattar, C.; Camacho, F. (2018). Estimación de parámetros biofísicos de la vegetación en praderas y cultivos en Chile mediante fotografía digital hemisférica obtenidas por una cámara GoPro. Revista de Teledetección. (52):1-15. https://doi.org/10.4995/raet.2018.9315 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2018.9315 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 52 | |
dc.identifier.eissn | 1988-8740 | |
dc.contributor.funder | Comisión Nacional de Investigación Científica y Tecnológica, Chile | |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | |
dc.contributor.funder | Earth Observation Laboratory | |
dc.description.references | Baret, F., Camacho, F., Cernicharo, J., Lacaze, R., Weiss, M. 2013. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sensing of Environment, 137, 310-329. https://doi.org/10.1016/j.rse.2012.12.027 | es_ES |
dc.description.references | Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F.,Weiss, M., Samain, O., Roujean, J.L., Leroy, M. 2007. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1: Principles of the algorithm. Remote Sensing of Environment, 110(3), 275-286. https://doi.org/10.1016/j.rse.2007.02.018 | es_ES |
dc.description.references | Baret, F., Weiss, M. 2018. Gio Global Land Component - Lot I "Operation of the Global Land Component" Algorithm Theoretical Basis Document, 1-41. | es_ES |
dc.description.references | Baret, F., Weiss, M., Allard, D., Garrigues, S., Leroy, M., Jeanjean, H., et al., 2005. VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sensing of Environment, 76(3), 36-39. | es_ES |
dc.description.references | Baret, F., Weiss, M., Verger, A., Smets, B. 2016. Gio Global Land Component - ATBD. Bréda, N.J.J. 2003. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403-2417. https://doi.org/10.1093/jxb/erg263 | es_ES |
dc.description.references | Bréda, N.J.J. 2003. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392), 2403-2417. https://doi.org/10.1093/jxb/erg263 | es_ES |
dc.description.references | Casanova, M., Salazar, O., Seguel, O., Luzio, W. 2013. The Soils of Chile, Springer. https://doi.org/10.1007/978-94-007-5949-7 | es_ES |
dc.description.references | Cescatti, A. 2007. Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs. Methodology and comparison with standard thresholding techniques. Agricultural and Forest Meteorology, 143(1-2), 1-12. https://doi.org/10.1016/j.agrformet.2006.04.009 | es_ES |
dc.description.references | Chen, J.M., Black, T.A. 1992. Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15(4), 421-429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x | es_ES |
dc.description.references | Confalonieri, R., Foi, M., Casa, R., Aquaro, S., Tona, E., Peterle, M., et al. 2013. Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Computers and Electronics in Agriculture, 96, 67- 74. https://doi.org/10.1016/j.compag.2013.04.019 | es_ES |
dc.description.references | De Bei, R., Fuentes, S., Gilliham, M., Tyerman, S., Edwards, E., Bianchini, N., Smith, J., Collins, C. 2016. Viticanopy: A free computer app to estimate canopy vigor and porosity for grapevine. Sensors, 16(4). https://doi.org/10.3390/s16040585 | es_ES |
dc.description.references | Demarez, V., Duthoit, S., Baret, F., Weiss, M., Dedieu, G. 2008. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agricultural and Forest Meteorology, 148(4), 644-655. https://doi.org/10.1016/j.agrformet.2007.11.015 | es_ES |
dc.description.references | Fang, H., Liang, S., Hoogenboom, G. 2011. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. International Journal of Remote Sensing, 32(4), 1039-1065. https://doi.org/10.1080/01431160903505310 | es_ES |
dc.description.references | Fournier, R.A., Landry, R., August, N.M., Fedosejevs, G., Gauthier, R.P. 1996. Modelling light obstruction in three conifer forests using hemispherical photography and fine tree architecture. Agricultural and Forest Meteorology, 82(1-4), 47-72. https://doi.org/10.1016/0168-1923(96)02345-3 | es_ES |
dc.description.references | Garrigues, S., Shabanov, N. V, Swanson, K., Morisette, J.T., Baret, F., Myneni, R.B. 2008. Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agricultural and Forest Meteorology, 148(8-9), 1193-1209. https://doi.org/10.1016/j.agrformet.2008.02.014 | es_ES |
dc.description.references | Gower, S.T., Kucharik, C.J., Norman, J.M. 1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70(1), 29-51. https://doi.org/10.1016/S0034-4257(99)00056-5 | es_ES |
dc.description.references | Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F. 2004. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1-2), 19- 35. https://doi.org/10.1016/j.agrformet.2003.08.027 | es_ES |
dc.description.references | Kross, A., McNairn, H., Lapen, D., Sunohara, M., Champagne, C. 2015. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34(1), 235-248. https://doi.org/10.1016/j.jag.2014.08.002 | es_ES |
dc.description.references | Lang, M., Kuusk, A., Mõttus, M., Rautiainen, M., Nilson, T. 2010. Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. Agricultural and Forest Meteorology, 150(1), 20-29. https://doi.org/10.1016/j.agrformet.2009.08.001 | es_ES |
dc.description.references | Latorre, C., Camacho, F., Mattar, C., Santamaría-Artigas, A., Leiva-Büchi, N., Lacaze, R. 2016. Obtención de mapas verdad-terreno de LAI, FAPAR y cobertura vegetal a partir de imágenes del satélite chileno FASat-C y medidas in-situ en la zona agrícola de Chimbarongo, Chile, para la validación de productos de satélite. Revista de Teledeteccion, 2016(47), 51- 64. https://doi.org/10.4995/raet.2016.5691 | es_ES |
dc.description.references | Li, W., Weiss, M., Waldner, F., Defourny, P., Demarez, V., Morin, D., Hagolle, O., Baret, F. 2015. A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4_HRVIR and landsat sensors: Evaluation of the consistency and comparison with ground measurements. Remote Sensing, 7(11), 15494- 15516. https://doi.org/10.3390/rs71115494 | es_ES |
dc.description.references | López-Lozano, R., Baret, F., García de Cortázar-Atauri, I., Bertrand, N., Casterad, M.A. 2009. Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards. Agricultural and Forest Meteorology, 149(8), 1307- 1316. https://doi.org/10.1016/j.agrformet.2009.03.001 | es_ES |
dc.description.references | Martínez, B., Camacho-de Coca, F., García-Haro, F. 2005a. Estimación de parámetros biofísicos de la cubierta vegetal a alta resolución a partir de medidas in-situ obtenidas en SPARC'03. XI Congreso Nacional de Teledetección, 21-23. | es_ES |
dc.description.references | Martínez, B., García-haro, F., Camacho-de Coca, F. 2005b. Estimación de parámetros biofísicos de vegetación utilizando el método de la cámara hemisférica. Revista de Teledetección, 23, 13-26. | es_ES |
dc.description.references | Mattar, C., Hernández, J., Santamaría-Artigas, A., Durán-Alarcón, C., Olivera-Guerra, L., Inzunza, M., Tapia, D., Escobar-lavín, E. 2014. A first in-flight absolute calibration of the Chilean Earth Observation Satellite. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 16-25. https://doi.org/10.1016/j.isprsjprs.2014.02.017 | es_ES |
dc.description.references | Mougin, E., Demarez, V., Diawara, M., Hiernaux, P., Soumaguel, N., Berg, A. 2014. Estimation of LAI, fAPAR and fCover of Sahel rangelands (Gourma, Mali). Agricultural and Forest Meteorology, 198, 155- 167. https://doi.org/10.1016/j.agrformet.2014.08.006 | es_ES |
dc.description.references | Nestola, E., Sánchez-Zapero, J., Latorre, C., Mazzenga, F., Matteucci, G., Calfapietra, C., Camacho, F. 2017. Validation of PROBA-V GEOV1 and MODIS C5 & C6 fAPAR Products in a Deciduous Beech Forest Site in Italy. Remote Sensing, 9(2), 126. https://doi.org/10.3390/rs9020126 | es_ES |
dc.description.references | Olivera-Guerra, L., Mattar, C., Galleguillos, M. 2014. Estimation of real evapotranspiration and its variation in Mediterranean landscapes of central-southern Chile. International Journal of Applied Earth Observation and Geoinformation, 28(1), 160-169. https://doi.org/10.1016/j.jag.2013.11.012 | es_ES |
dc.description.references | Olivera-Guerra, L., Merlin, O., Mattar, C., Duran-Alarcon, C., Santamaria-Artigas, A., Stefan, V. 2015. Combining meteorological and lysimeter data to evaluate energy and water fluxes over a row crop for remote sensing applications. International Geoscience and Remote Sensing Symposium (IGARSS), 2015-Novem, 4649- 4651. https://doi.org/10.1109/IGARSS.2015.7326865 | es_ES |
dc.description.references | Paul M. Rich, 1990. Characterizing Plant Canopies with Hemispherical Photograph s. Remote Sensing Reviews, 5(November 2012), 37-41. https://doi.org/10.1080/02757259009532119 | es_ES |
dc.description.references | Rigon, J.P.G., Capuani, S., Fernandes, D.M., Guimarães, T.M. 2016. A novel method for the estimation of soybean chlorophyll content using a smartphone and image analysis. Photosynthetica, 54(4), 559-566. https://doi.org/10.1007/s11099-016-0214-x | es_ES |
dc.description.references | Sarricolea, P., Herrera-Ossandon, M., MeseguerRuiz, Ó. 2017. Climatic regionalisation of continental Chile. Journal of Maps, 13(2), 66-73. https://doi.org/10.1080/17445647.2016.1259592 | es_ES |
dc.description.references | Sellers, P.J., Dickinson, R.E., Randall, D.A., Betts, A.K., Hall, F.G., Berry, J.A., et al. 1997. Modeling the Exchanges of Energy, Water, and Carbon between Continents and the Atmosphere. Science , 275(5299), 502-509. https://doi.org/10.1126/science.275.5299.502 | es_ES |
dc.description.references | Tarnavsky, E., Garrigues, S., Brown, M.E. 2008. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sensing of Environment, 112(2), 535-549. https://doi.org/10.1016/j.rse.2007.05.008 | es_ES |
dc.description.references | Verger, A., Baret, F., Camacho, F. 2011. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sensing of Environment, 115(2), 415-426. https://doi.org/10.1016/j.rse.2010.09.012 | es_ES |
dc.description.references | Weiss, M., Baret, F. 2016. Can Eye User Manual. | es_ES |
dc.description.references | Weiss, M., Baret, F., Smith, G.J., Jonckheere, I., Coppin, P. 2004. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121(1-2), 37-53. https://doi.org/10.1016/j.agrformet.2003.08.001 | es_ES |
dc.description.references | Zheng, G., Moskal, L.MX009. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors, 9(4), 2719-2745. https://doi.org/10.3390/s90402719 | es_ES |