Mostrar el registro sencillo del ítem
dc.contributor.author | Torralba, J. | es_ES |
dc.contributor.author | Crespo-Peremarch, P. | es_ES |
dc.contributor.author | Ruiz, L. A. | es_ES |
dc.date.accessioned | 2019-01-08T12:49:41Z | |
dc.date.available | 2019-01-08T12:49:41Z | |
dc.date.issued | 2018-12-26 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/114903 | |
dc.description | Revista oficial de la Asociación Española de Teledetección | |
dc.description.abstract | [EN] LiDAR technology –airborne and terrestrial- is becoming more relevant in the development of forest inventories, which are crucial to better understand and manage forest ecosystems. In this study, we assessed a classification of species composition in a Mediterranean forest following the C4.5 decision tree. Different data sets from airborne laser scanner full-waveform (ALSFW), discrete (ALSD) and terrestrial laser scanner (TLS) were combined as input data for the classification. Species composition were divided into five classes: pure Quercus ilex plots (QUI); pure Pinus halepensis dense regenerated (HALr); pure P. halepensis (HAL); pure P. pinaster (PIN); and mixed P. pinaster and Q. suber (mPIN). Furthermore, the class HAL was subdivided in low and dense understory vegetation cover. As a result, combination of ALSFW and TLS reached 85.2% of overall accuracy classifying classes HAL, PIN and mPIN. Combining ALSFW and ALSD, the overall accuracy was 77.0% to discriminate among the five classes. Finally, classification of understory vegetation cover using ALSFW reached an overall accuracy of 90.9%. In general, combination of ALSFW and TLS improved the overall accuracy of classifying among HAL, PIN and mPIN by 7.4% compared to the use of the data sets separately, and by 33.3% with respect to the use of ALSD only. ALSFW metrics, in particular those specifically designed for detection of understory vegetation, increased the overall accuracy 9.1% with respect to ALSD metrics. These analyses show that classification in forest ecosystems with presence of understory vegetation and intermediate canopy strata is improved when ALSFW and/or TLS are used instead of ALSD. | es_ES |
dc.description.abstract | [ES] La tecnología LiDAR, tanto en sus versiones aerotransportada como terrestre, ha adquirido relevancia en los últimos años en la realización de inventarios forestales que permiten entender y adecuar la gestión de los ecosistemas forestales. En este estudio, se evaluó la clasificación por composición de especies en un bosque mediterráneo mediante el árbol de decisión C4.5. Para ello, se emplearon diferentes conjuntos de datos derivados de LiDAR discreto (ALSD ), LiDAR de retorno de onda completa (full-waveform, ALSFW) y láser escáner terrestre (TLS) como datos de entrada de la clasificación. La composición de especies se dividió en cinco clases: parcelas puras de Quercus ilex (QUI); puras de Pinus halepensis regenerado (HALr); puras de P. halepensis (HAL); puras de P. pinaster (PIN); y mixta de P. pinaster y Q. suber (mPIN). Además, se realizó una subdivisión de la clase HAL en cobertura de sotobosque escasa y densa. Como resultado se obtuvo una fiabilidad del 85,2% en la clasificación de las clases HAL, PIN y mPIN combinando ALSFW y TLS. En la clasificación de las cinco composiciones de especies, la fiabilidad alcanzada empleando ALSFW y ALSD fue del 77,0%. Finalmente, en la clasificación de las subclases de cobertura de sotobosque se logró un 90,9% de fiabilidad con ALSFW. En general, la combinación de ALSFW y TLS mejoró los resultados en un 7,4% en la clasificación de las clases HAL, PIN y mPIN en comparación con el uso de los datos de los sensores por separado, y en un 33,3% con respecto al uso de ALSD. Las métricas ALSFW, en particular aquellas diseñadas especialmente para la detección del sotobosque, mejoraron la precisión en un 9,1% con respecto a las métricas derivadas de ALSD. Estos análisis muestran que el uso del ALSFW y TLS mejora la clasificación de los ecosistemas forestales con presencia de sotobosque y diferentes especies arbóreas en los estratos intermedios con respecto al ALSD. | es_ES |
dc.description.sponsorship | This research has been funded by the Spanish Ministerio de Economia y Competitividad and FEDER, in the framework of the project CGL2016-80705-R. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Revista de Teledetección | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Airborne laser scanning | es_ES |
dc.subject | Láser escáner aerotransportado | es_ES |
dc.subject | Láser escáner terrestre | es_ES |
dc.subject | Clasificación | es_ES |
dc.subject | Sotobosque | es_ES |
dc.subject | Forestal | es_ES |
dc.subject | Terrestrial laser scanning | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Understory vegetation | es_ES |
dc.subject | Forestry | es_ES |
dc.title | Evaluación del uso de LiDAR discreto, full-waveform y TLS en la clasificación por composición de especies en bosques mediterráneos | es_ES |
dc.title.alternative | Assessing the use of discrete, full-waveform LiDAR and TLS to classify Mediterranean forest species composition | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-01-08T12:03:45Z | |
dc.identifier.doi | 10.4995/raet.2018.11106 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2016-80705-R/ES/ANALISIS Y VALIDACION DE PARAMETROS DE ESTRUCTURA FORESTAL DERIVADOS DE LIDAR Y OTRAS TECNICAS EMERGENTES Y SU INCIDENCIA EN LA MODELIZACION DEL POTENCIAL COMBUSTIBLE/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Torralba, J.; Crespo-Peremarch, P.; Ruiz, LA. (2018). Evaluación del uso de LiDAR discreto, full-waveform y TLS en la clasificación por composición de especies en bosques mediterráneos. Revista de Teledetección. (52):27-40. https://doi.org/10.4995/raet.2018.11106 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2018.11106 | es_ES |
dc.description.upvformatpinicio | 27 | es_ES |
dc.description.upvformatpfin | 40 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 52 | |
dc.identifier.eissn | 1988-8740 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | European Regional Development Fund | |
dc.description.references | Åkerblom, M., Raumonen, P., Mäkipää, R., Kaasalainen, M. 2017. Automatic tree species recognition with quantitative structure models. Remote Sensing of Environment, 191, 1-12. https://doi.org/10.1016/j.rse.2016.12.002 | es_ES |
dc.description.references | Barbier, S., Gosselin, F., Balandier, P. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved-A critical review for temperate and boreal forests. Forest Ecology and Management, 254(1), 1-15. https://doi.org/10.1016/j.foreco.2007.09.038 | es_ES |
dc.description.references | Bastrup-Birk, A., Reker, J., Zal, N. 2016. European forest ecosystems: State and trends. EEA Report n° 5/2016. Copenhagen. https://doi.org/10.2800/964893 | es_ES |
dc.description.references | Bauwens, S., Bartholomeus, H., Calders, K., Lejeune, P. 2016. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests, 7(12), 127. https://doi.org/10.3390/f7060127 | es_ES |
dc.description.references | Cabo, C., Ordóñez, C., López-Sánchez, C. A., Armesto, J. 2018. Automatic dendrometry: Tree detection, tree height and diameter estimation using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 69(November 2017), 164-174. https://doi.org/10.1016/j.jag.2018.01.011 | es_ES |
dc.description.references | Cao, L., Coops, N., Hermosilla, T., Innes, J., Dai, J., She, G. 2014. Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests. Remote Sensing, 6(8), 7110- 7135. https://doi.org/10.3390/rs6087110 | es_ES |
dc.description.references | Cifuentes, R., Zande, D. Van Der, Farifteh, J., Salas, C., Coppin, P. 2015. Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data. Agricultural and Forest Meteorology, 201(August), 416. https://doi.org/10.1016/j.agrformet.2015.08.226 | es_ES |
dc.description.references | Cowling, R. M., Rundel, P. W., Lamont, B. B., Kalin Arroyo, M., Arianoutsou, M. 1996. Plant diversity in mediterranean-climate regions. Trends in Ecology & Evolution, 11(9), 362-366. https://doi.org/10.1016/0169-5347(96)10044-6 | es_ES |
dc.description.references | Crespo-Peremarch, P., Ruiz, L. A., Balaguer-Beser, A. 2016. A comparative study of regression methods to predict forest structure and canopy fuel variables from LiDAR full-waveform data. Revista de Teledetección, 45, 27-40. https://doi.org/10.4995/raet.2016.4066 | es_ES |
dc.description.references | Crespo-Peremarch, P., Ruiz, L. Á. 2017. Análisis comparativo del potencial del ALS y TLS en la caracterización estructural de la masa forestal basado en voxelización. In Nuevas plataformas y sensores de teledetcción. XVII Congreso de la Asociación Española de Teledetección (pp. 131-135). Murcia: Asociación Española de Teledetección. | es_ES |
dc.description.references | Crespo-Peremarch, P., Tompalski, P., Coops, N. C., Ruiz, L. Á. 2018. Characterizing understory vegetation in Mediterranean forests using fullwaveform airborne laser scanning data. Remote Sensing of Environment, 217(August), 400-413. https://doi.org/10.1016/j.rse.2018.08.033 | es_ES |
dc.description.references | Dubayah, R. O., Drake, J. B. 2000. Lidar Remote Sensing for Forestry Applications. Journal of Forestry, 98(6), 44-46. https://doi.org/10.1093/jof/98.6.44 | es_ES |
dc.description.references | Duncanson, L. I., Niemann, K. O., Wulder, M. A. 2010. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2009.08.018 | es_ES |
dc.description.references | Duong, V. H. 2010. Processing and Application of ICESat Large Footprint Full Waveform Laser Range Data. Delft University of Technology, Delft, The Netherlands. | es_ES |
dc.description.references | Estornell, J., Velázquez-Martí, A., FernándezSarría, A., López-Cortés, I., Martí-Gavilá, J., Salazar, D. 2017. Estimación de parámetros de estructura de nogales utilizando láser escáner terrestre. Revista de Teledetección, 48, 67. https://doi.org/10.4995/raet.2017.7429 | es_ES |
dc.description.references | García, M., Danson, F. M., Riaño, D., Chuvieco, E., Ramirez, F. A., Bandugula, V. 2011. Terrestrial laser scanning to estimate plot-level forest canopy fuel properties. International Journal of Applied Earth Observation and Geoinformation, 13(4), 636-645. https://doi.org/10.1016/j.jag.2011.03.006 | es_ES |
dc.description.references | Geri, F., Amici, V., Rocchini, D. 2010. Human activity impact on the heterogeneity of a Mediterranean landscape. Applied Geography, 30(3), 370-379. https://doi.org/10.1016/J.APGEOG.2009.10.006 | es_ES |
dc.description.references | Hancock, S., Anderson, K., Disney, M., Gaston, K. J. 2017. Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar. Remote Sensing of Environment, 188, 37-50. https://doi.org/10.1016/J.RSE.2016.10.041 | es_ES |
dc.description.references | Heinzel, J., Koch, B. 2011. Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. https://doi.org/10.1016/J.JAG.2010.09.010 | es_ES |
dc.description.references | Heinzel, J., Huber, M. 2016. Detecting tree stems from volumetric TLS data in forest environments with rich understory. Remote Sensing, 9(1), 9. https://doi.org/10.3390/rs9010009 | es_ES |
dc.description.references | Hollaus, M., Mücke, W., Höfle, B., Dorigo, W., Pfeifer, N., Wagner, W., … Regner, B. 2009. Tree species classification based on full-waveform airborne laser scanning data. In Silvilaser 2009 (Vol. 54). Texas, USA. | es_ES |
dc.description.references | Isenburg, M. 2018. LAStools - Efficient tools for LiDAR processing. (Version 180409) obtained from http://rapidlasso.com/LAStools. Alemania: Rapidlasso GmbH. | es_ES |
dc.description.references | Kankare, V., Liang, X., Vastaranta, M., Yu, X., Holopainen, M., Hyyppä, J. 2015. Diameter distribution estimation with laser scanning based multisource single tree inventory. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 161- 171. https://doi.org/10.1016/j.isprsjprs.2015.07.007 | es_ES |
dc.description.references | Kimes, D. S., Ranson, K. J., Sun, G., Blair, J. B. 2006. Predicting lidar measured forest vertical structure from multi-angle spectral data. Remote Sensing of Environment, 100(4), 503-511. https://doi.org/10.1016/j.rse.2005.11.004 | es_ES |
dc.description.references | Kraus, K., Pfeifer, N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53(4), 193-203. https://doi.org/10.1016/S0924-2716(98)00009-4 | es_ES |
dc.description.references | Lefsky, M. A., Cohen, W. B., Parker, G. G., Harding, D. J. 2002. Lidar Remote Sensing for Ecosystem Studies. BioScience, 52(1), 19-30. https://doi. org/10.1641/0006-3568(2002)052[0019:LRSFES]2 .0.CO;2 | es_ES |
dc.description.references | Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., … Vastaranta, M. 2016. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63- 77. https://doi.org/10.1016/j.isprsjprs.2016.01.006 | es_ES |
dc.description.references | Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., … Wang, Y. 2018. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144(October 2018), 137-179. https://doi. org/10.1016/j.isprsjprs.2018.06.021 | es_ES |
dc.description.references | Lin, Y., Herold, M. 2016. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agricultural and Forest Meteorology, 216, 105-114. https://doi.org/10.1016/j.agrformet.2015.10.008 | es_ES |
dc.description.references | Maas, H. G., Bienert, A., Scheller, S., Keane, E. 2008. Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing, 29(5), 1579-1593. https://doi.org/10.1080/01431160701736406 | es_ES |
dc.description.references | Magrama. 2006. Mapa Forestal de España. Escala 1:50.000. Ministerio de Agricultura, Alimentación y Medio Ambiente. Dirección General de Desarrollo Rural y Política Forestal. | es_ES |
dc.description.references | McGaughey, R. J. 2016. FUSION/LDV: Software for LIDAR Data Analysis and Visualization. Seattle (WA): USDS Forest Service, Pacific Northwest Research Station. https://doi.org/10.1097/ BRS.0b013e3182a439cc | es_ES |
dc.description.references | Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853- 858. https://doi.org/10.1038/35002501 | es_ES |
dc.description.references | Othmani, A., Piboule, A., Krebs, M., Stolz, C. 2011. Towards automated and operational forest inventories with T-Lidar. SilviLaser, 1-9. | es_ES |
dc.description.references | Othmani, A., Lew Yan Voon, L. F. C., Stolz, C., Piboule, A. 2013. Single tree species classification from Terrestrial Laser Scanning data for forest inventory. Pattern Recognition Letters, 34(16), 2144-2150. https://doi.org/10.1016/j.patrec.2013.08.004 | es_ES |
dc.description.references | Palik, B., Engstrom, R. T. 1999. Species composition. In M. L. Hunter (Ed.), Maintaining Biodiversity in Forest Ecosystems (pp. 65- 94). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511613029.005 | es_ES |
dc.description.references | Pan, Y., Birdsey, R. A., Phillips, O. L., Jackson, R. B. 2013. The Structure, Distribution, and Biomass of the World's Forests. Annual Review of Ecology, Evolution, and Systematics, 44(1), 593-622. https:// doi.org/10.1146/annurev-ecolsys-110512-135914 | es_ES |
dc.description.references | Ruiz, L. A., Hermosilla, T., Mauro, F., Godino, M. 2014. Analysis of the influence of plot size and LiDAR density on forest structure attribute estimates. Forests, 5(5), 936-951. https://doi.org/10.3390/ f5050936 | es_ES |
dc.description.references | Ruiz, L. Á., Recio, J. A., Crespo-Peremarch, P., Sapena, M. 2018. An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International, 33(5), 443-457. https://doi.org/10.1080/10106049.2 016.1265595 | es_ES |
dc.description.references | Scarascia-Mugnozza, G., Oswald, H., Piussi, P., Radoglou, K. 2000. Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecology and Management, 132(1), 97-109. https://doi.org/10.1016/S0378-1127(00)00383-2 | es_ES |
dc.description.references | Shugart, H. H., Saatchi, S., Hall, F. G. 2010. Importance of structure and its measurement in quantifying function of forest ecosystems. Journal of Geophysical Research: Biogeosciences, 115(G2), n/a-n/a. https://doi.org/10.1029/2009JG000993 | es_ES |
dc.description.references | Valbuena, P., Del Peso, C., Bravo, F. 2008. Stand Density Management Diagrams for two Mediterranean pine species in Eastern Spain. Investigación Agraria: Sistemas y Recursos Forestales, 17(2), 97. https:// doi.org/10.5424/srf/2008172-01026 | es_ES |
dc.description.references | Valbuena, R., Maltamo, M., Packalen, P. 2016. Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods. Revista de Teledetección, 45, 15-25. https://doi.org/10.4995/raet.2016.4029 | es_ES |
dc.description.references | Vogeler, J. C., Cohen, W. B. 2016. A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models. Revista de Teledetección, 45, 1-14. https://doi.org/10.4995/raet.2016.3981 | es_ES |
dc.description.references | West, P. W. 2009. Tree and Forest Measurement. Springer-Verlag Berlin Heidelberg (2nd ed.). Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-95966-3 | es_ES |
dc.description.references | Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., Gonzalez de Tanago, J., … Herold, M. 2017. Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sensing of Environment, 196, 140-153. https://doi.org/10.1016/j.rse.2017.04.030 | es_ES |
dc.description.references | Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., … Gobakken, T. 2012. Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 121, 196- 209. https://doi.org/10.1016/J.RSE.2012.02.001 | es_ES |
dc.description.references | Zaldo, V., Moré, G., Pons, X. 2010. Estimación y cartografía de parámetros ecológicos y forestales en tres especies (Quercus ilex L. subsp ilex, Fagus sylvatica L. y Pinus halepensis L.) con datos LiDAR. Revista de Teledetección, 34, 55-68. | es_ES |
dc.description.references | Zeide, B. 2004. Stand Density and Canopy Gaps. In K. F. Connor (Ed.), Gen. Tech. Rep. SRS 71. US Department of Agriculture, Forest Service, Southern Research Station (pp. 79-183). Biloxi, Mississippi: USDA Forest Service Southern Research Station, Asheville, North Carolina. | es_ES |
dc.description.references | Zhang, J., de Gier, A., Xing, Y., Sohn, G. 2011. Full Waveform-based Analysis for Forest Type Information Derivation from Large Footprint Spaceborne Lidar Data. Photogrammetric Engineering & Remote Sensing, 77(3), 281-290. https://doi.org/10.14358/PERS.77.3.281 | es_ES |