- -

Evaluación del uso de LiDAR discreto, full-waveform y TLS en la clasificación por composición de especies en bosques mediterráneos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluación del uso de LiDAR discreto, full-waveform y TLS en la clasificación por composición de especies en bosques mediterráneos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torralba, J. es_ES
dc.contributor.author Crespo-Peremarch, P. es_ES
dc.contributor.author Ruiz, L. A. es_ES
dc.date.accessioned 2019-01-08T12:49:41Z
dc.date.available 2019-01-08T12:49:41Z
dc.date.issued 2018-12-26
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/114903
dc.description Revista oficial de la Asociación Española de Teledetección
dc.description.abstract [EN] LiDAR technology –airborne and terrestrial- is becoming more relevant in the development of forest inventories, which are crucial to better understand and manage forest ecosystems. In this study, we assessed a classification of species composition in a Mediterranean forest following the C4.5 decision tree. Different data sets from airborne laser scanner full-waveform (ALSFW), discrete (ALSD) and terrestrial laser scanner (TLS) were combined as input data for the classification. Species composition were divided into five classes: pure Quercus ilex plots (QUI); pure Pinus halepensis dense regenerated (HALr); pure P. halepensis (HAL); pure P. pinaster (PIN); and mixed P. pinaster and Q. suber (mPIN). Furthermore, the class HAL was subdivided in low and dense understory vegetation cover. As a result, combination of ALSFW and TLS reached 85.2% of overall accuracy classifying classes HAL, PIN and mPIN. Combining ALSFW and ALSD, the overall accuracy was 77.0% to discriminate among the five classes. Finally, classification of understory vegetation cover using ALSFW reached an overall accuracy of 90.9%. In general, combination of ALSFW and TLS improved the overall accuracy of classifying among HAL, PIN and mPIN by 7.4% compared to the use of the data sets separately, and by 33.3% with respect to the use of ALSD only. ALSFW metrics, in particular those specifically designed for detection of understory vegetation, increased the overall accuracy 9.1% with respect to ALSD metrics. These analyses show that classification in forest ecosystems with presence of understory vegetation and intermediate canopy strata is improved when ALSFW and/or TLS are used instead of ALSD. es_ES
dc.description.abstract [ES] La tecnología LiDAR, tanto en sus versiones aerotransportada como terrestre, ha adquirido relevancia en los últimos años en la realización de inventarios forestales que permiten entender y adecuar la gestión de los ecosistemas forestales. En este estudio, se evaluó la clasificación por composición de especies en un bosque mediterráneo mediante el árbol de decisión C4.5. Para ello, se emplearon diferentes conjuntos de datos derivados de LiDAR discreto (ALSD ), LiDAR de retorno de onda completa (full-waveform, ALSFW) y láser escáner terrestre (TLS) como datos de entrada de la clasificación. La composición de especies se dividió en cinco clases: parcelas puras de Quercus ilex (QUI); puras de Pinus halepensis regenerado (HALr); puras de P. halepensis (HAL); puras de P. pinaster (PIN); y mixta de P. pinaster y Q. suber (mPIN). Además, se realizó una subdivisión de la clase HAL en cobertura de sotobosque escasa y densa. Como resultado se obtuvo una fiabilidad del 85,2% en la clasificación de las clases HAL, PIN y mPIN combinando ALSFW y TLS. En la clasificación de las cinco composiciones de especies, la fiabilidad alcanzada empleando ALSFW y ALSD fue del 77,0%. Finalmente, en la clasificación de las subclases de cobertura de sotobosque se logró un 90,9% de fiabilidad con ALSFW. En general, la combinación de ALSFW y TLS mejoró los resultados en un 7,4% en la clasificación de las clases HAL, PIN y mPIN en comparación con el uso de los datos de los sensores por separado, y en un 33,3% con respecto al uso de ALSD. Las métricas ALSFW, en particular aquellas diseñadas especialmente para la detección del sotobosque, mejoraron la precisión en un 9,1% con respecto a las métricas derivadas de ALSD. Estos análisis muestran que el uso del ALSFW y TLS mejora la clasificación de los ecosistemas forestales con presencia de sotobosque y diferentes especies arbóreas en los estratos intermedios con respecto al ALSD. es_ES
dc.description.sponsorship This research has been funded by the Spanish Ministerio de Economia y Competitividad and FEDER, in the framework of the project CGL2016-80705-R. en_EN
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista de Teledetección
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Airborne laser scanning es_ES
dc.subject Láser escáner aerotransportado es_ES
dc.subject Láser escáner terrestre es_ES
dc.subject Clasificación es_ES
dc.subject Sotobosque es_ES
dc.subject Forestal es_ES
dc.subject Terrestrial laser scanning es_ES
dc.subject Classification es_ES
dc.subject Understory vegetation es_ES
dc.subject Forestry es_ES
dc.title Evaluación del uso de LiDAR discreto, full-waveform y TLS en la clasificación por composición de especies en bosques mediterráneos es_ES
dc.title.alternative Assessing the use of discrete, full-waveform LiDAR and TLS to classify Mediterranean forest species composition es_ES
dc.type Artículo es_ES
dc.date.updated 2019-01-08T12:03:45Z
dc.identifier.doi 10.4995/raet.2018.11106
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2016-80705-R/ES/ANALISIS Y VALIDACION DE PARAMETROS DE ESTRUCTURA FORESTAL DERIVADOS DE LIDAR Y OTRAS TECNICAS EMERGENTES Y SU INCIDENCIA EN LA MODELIZACION DEL POTENCIAL COMBUSTIBLE/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Torralba, J.; Crespo-Peremarch, P.; Ruiz, LA. (2018). Evaluación del uso de LiDAR discreto, full-waveform y TLS en la clasificación por composición de especies en bosques mediterráneos. Revista de Teledetección. (52):27-40. https://doi.org/10.4995/raet.2018.11106 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2018.11106 es_ES
dc.description.upvformatpinicio 27 es_ES
dc.description.upvformatpfin 40 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 52
dc.identifier.eissn 1988-8740
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder European Regional Development Fund
dc.description.references Åkerblom, M., Raumonen, P., Mäkipää, R., Kaasalainen, M. 2017. Automatic tree species recognition with quantitative structure models. Remote Sensing of Environment, 191, 1-12. https://doi.org/10.1016/j.rse.2016.12.002 es_ES
dc.description.references Barbier, S., Gosselin, F., Balandier, P. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved-A critical review for temperate and boreal forests. Forest Ecology and Management, 254(1), 1-15. https://doi.org/10.1016/j.foreco.2007.09.038 es_ES
dc.description.references Bastrup-Birk, A., Reker, J., Zal, N. 2016. European forest ecosystems: State and trends. EEA Report n° 5/2016. Copenhagen. https://doi.org/10.2800/964893 es_ES
dc.description.references Bauwens, S., Bartholomeus, H., Calders, K., Lejeune, P. 2016. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests, 7(12), 127. https://doi.org/10.3390/f7060127 es_ES
dc.description.references Cabo, C., Ordóñez, C., López-Sánchez, C. A., Armesto, J. 2018. Automatic dendrometry: Tree detection, tree height and diameter estimation using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 69(November 2017), 164-174. https://doi.org/10.1016/j.jag.2018.01.011 es_ES
dc.description.references Cao, L., Coops, N., Hermosilla, T., Innes, J., Dai, J., She, G. 2014. Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests. Remote Sensing, 6(8), 7110- 7135. https://doi.org/10.3390/rs6087110 es_ES
dc.description.references Cifuentes, R., Zande, D. Van Der, Farifteh, J., Salas, C., Coppin, P. 2015. Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data. Agricultural and Forest Meteorology, 201(August), 416. https://doi.org/10.1016/j.agrformet.2015.08.226 es_ES
dc.description.references Cowling, R. M., Rundel, P. W., Lamont, B. B., Kalin Arroyo, M., Arianoutsou, M. 1996. Plant diversity in mediterranean-climate regions. Trends in Ecology & Evolution, 11(9), 362-366. https://doi.org/10.1016/0169-5347(96)10044-6 es_ES
dc.description.references Crespo-Peremarch, P., Ruiz, L. A., Balaguer-Beser, A. 2016. A comparative study of regression methods to predict forest structure and canopy fuel variables from LiDAR full-waveform data. Revista de Teledetección, 45, 27-40. https://doi.org/10.4995/raet.2016.4066 es_ES
dc.description.references Crespo-Peremarch, P., Ruiz, L. Á. 2017. Análisis comparativo del potencial del ALS y TLS en la caracterización estructural de la masa forestal basado en voxelización. In Nuevas plataformas y sensores de teledetcción. XVII Congreso de la Asociación Española de Teledetección (pp. 131-135). Murcia: Asociación Española de Teledetección. es_ES
dc.description.references Crespo-Peremarch, P., Tompalski, P., Coops, N. C., Ruiz, L. Á. 2018. Characterizing understory vegetation in Mediterranean forests using fullwaveform airborne laser scanning data. Remote Sensing of Environment, 217(August), 400-413. https://doi.org/10.1016/j.rse.2018.08.033 es_ES
dc.description.references Dubayah, R. O., Drake, J. B. 2000. Lidar Remote Sensing for Forestry Applications. Journal of Forestry, 98(6), 44-46. https://doi.org/10.1093/jof/98.6.44 es_ES
dc.description.references Duncanson, L. I., Niemann, K. O., Wulder, M. A. 2010. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2009.08.018 es_ES
dc.description.references Duong, V. H. 2010. Processing and Application of ICESat Large Footprint Full Waveform Laser Range Data. Delft University of Technology, Delft, The Netherlands. es_ES
dc.description.references Estornell, J., Velázquez-Martí, A., FernándezSarría, A., López-Cortés, I., Martí-Gavilá, J., Salazar, D. 2017. Estimación de parámetros de estructura de nogales utilizando láser escáner terrestre. Revista de Teledetección, 48, 67. https://doi.org/10.4995/raet.2017.7429 es_ES
dc.description.references García, M., Danson, F. M., Riaño, D., Chuvieco, E., Ramirez, F. A., Bandugula, V. 2011. Terrestrial laser scanning to estimate plot-level forest canopy fuel properties. International Journal of Applied Earth Observation and Geoinformation, 13(4), 636-645. https://doi.org/10.1016/j.jag.2011.03.006 es_ES
dc.description.references Geri, F., Amici, V., Rocchini, D. 2010. Human activity impact on the heterogeneity of a Mediterranean landscape. Applied Geography, 30(3), 370-379. https://doi.org/10.1016/J.APGEOG.2009.10.006 es_ES
dc.description.references Hancock, S., Anderson, K., Disney, M., Gaston, K. J. 2017. Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar. Remote Sensing of Environment, 188, 37-50. https://doi.org/10.1016/J.RSE.2016.10.041 es_ES
dc.description.references Heinzel, J., Koch, B. 2011. Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. https://doi.org/10.1016/J.JAG.2010.09.010 es_ES
dc.description.references Heinzel, J., Huber, M. 2016. Detecting tree stems from volumetric TLS data in forest environments with rich understory. Remote Sensing, 9(1), 9. https://doi.org/10.3390/rs9010009 es_ES
dc.description.references Hollaus, M., Mücke, W., Höfle, B., Dorigo, W., Pfeifer, N., Wagner, W., … Regner, B. 2009. Tree species classification based on full-waveform airborne laser scanning data. In Silvilaser 2009 (Vol. 54). Texas, USA. es_ES
dc.description.references Isenburg, M. 2018. LAStools - Efficient tools for LiDAR processing. (Version 180409) obtained from http://rapidlasso.com/LAStools. Alemania: Rapidlasso GmbH. es_ES
dc.description.references Kankare, V., Liang, X., Vastaranta, M., Yu, X., Holopainen, M., Hyyppä, J. 2015. Diameter distribution estimation with laser scanning based multisource single tree inventory. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 161- 171. https://doi.org/10.1016/j.isprsjprs.2015.07.007 es_ES
dc.description.references Kimes, D. S., Ranson, K. J., Sun, G., Blair, J. B. 2006. Predicting lidar measured forest vertical structure from multi-angle spectral data. Remote Sensing of Environment, 100(4), 503-511. https://doi.org/10.1016/j.rse.2005.11.004 es_ES
dc.description.references Kraus, K., Pfeifer, N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53(4), 193-203. https://doi.org/10.1016/S0924-2716(98)00009-4 es_ES
dc.description.references Lefsky, M. A., Cohen, W. B., Parker, G. G., Harding, D. J. 2002. Lidar Remote Sensing for Ecosystem Studies. BioScience, 52(1), 19-30. https://doi. org/10.1641/0006-3568(2002)052[0019:LRSFES]2 .0.CO;2 es_ES
dc.description.references Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., … Vastaranta, M. 2016. Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 63- 77. https://doi.org/10.1016/j.isprsjprs.2016.01.006 es_ES
dc.description.references Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., … Wang, Y. 2018. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144(October 2018), 137-179. https://doi. org/10.1016/j.isprsjprs.2018.06.021 es_ES
dc.description.references Lin, Y., Herold, M. 2016. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agricultural and Forest Meteorology, 216, 105-114. https://doi.org/10.1016/j.agrformet.2015.10.008 es_ES
dc.description.references Maas, H. G., Bienert, A., Scheller, S., Keane, E. 2008. Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing, 29(5), 1579-1593. https://doi.org/10.1080/01431160701736406 es_ES
dc.description.references Magrama. 2006. Mapa Forestal de España. Escala 1:50.000. Ministerio de Agricultura, Alimentación y Medio Ambiente. Dirección General de Desarrollo Rural y Política Forestal. es_ES
dc.description.references McGaughey, R. J. 2016. FUSION/LDV: Software for LIDAR Data Analysis and Visualization. Seattle (WA): USDS Forest Service, Pacific Northwest Research Station. https://doi.org/10.1097/ BRS.0b013e3182a439cc es_ES
dc.description.references Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853- 858. https://doi.org/10.1038/35002501 es_ES
dc.description.references Othmani, A., Piboule, A., Krebs, M., Stolz, C. 2011. Towards automated and operational forest inventories with T-Lidar. SilviLaser, 1-9. es_ES
dc.description.references Othmani, A., Lew Yan Voon, L. F. C., Stolz, C., Piboule, A. 2013. Single tree species classification from Terrestrial Laser Scanning data for forest inventory. Pattern Recognition Letters, 34(16), 2144-2150. https://doi.org/10.1016/j.patrec.2013.08.004 es_ES
dc.description.references Palik, B., Engstrom, R. T. 1999. Species composition. In M. L. Hunter (Ed.), Maintaining Biodiversity in Forest Ecosystems (pp. 65- 94). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511613029.005 es_ES
dc.description.references Pan, Y., Birdsey, R. A., Phillips, O. L., Jackson, R. B. 2013. The Structure, Distribution, and Biomass of the World's Forests. Annual Review of Ecology, Evolution, and Systematics, 44(1), 593-622. https:// doi.org/10.1146/annurev-ecolsys-110512-135914 es_ES
dc.description.references Ruiz, L. A., Hermosilla, T., Mauro, F., Godino, M. 2014. Analysis of the influence of plot size and LiDAR density on forest structure attribute estimates. Forests, 5(5), 936-951. https://doi.org/10.3390/ f5050936 es_ES
dc.description.references Ruiz, L. Á., Recio, J. A., Crespo-Peremarch, P., Sapena, M. 2018. An object-based approach for mapping forest structural types based on low-density LiDAR and multispectral imagery. Geocarto International, 33(5), 443-457. https://doi.org/10.1080/10106049.2 016.1265595 es_ES
dc.description.references Scarascia-Mugnozza, G., Oswald, H., Piussi, P., Radoglou, K. 2000. Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecology and Management, 132(1), 97-109. https://doi.org/10.1016/S0378-1127(00)00383-2 es_ES
dc.description.references Shugart, H. H., Saatchi, S., Hall, F. G. 2010. Importance of structure and its measurement in quantifying function of forest ecosystems. Journal of Geophysical Research: Biogeosciences, 115(G2), n/a-n/a. https://doi.org/10.1029/2009JG000993 es_ES
dc.description.references Valbuena, P., Del Peso, C., Bravo, F. 2008. Stand Density Management Diagrams for two Mediterranean pine species in Eastern Spain. Investigación Agraria: Sistemas y Recursos Forestales, 17(2), 97. https:// doi.org/10.5424/srf/2008172-01026 es_ES
dc.description.references Valbuena, R., Maltamo, M., Packalen, P. 2016. Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods. Revista de Teledetección, 45, 15-25. https://doi.org/10.4995/raet.2016.4029 es_ES
dc.description.references Vogeler, J. C., Cohen, W. B. 2016. A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models. Revista de Teledetección, 45, 1-14. https://doi.org/10.4995/raet.2016.3981 es_ES
dc.description.references West, P. W. 2009. Tree and Forest Measurement. Springer-Verlag Berlin Heidelberg (2nd ed.). Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-95966-3 es_ES
dc.description.references Wilkes, P., Lau, A., Disney, M., Calders, K., Burt, A., Gonzalez de Tanago, J., … Herold, M. 2017. Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sensing of Environment, 196, 140-153. https://doi.org/10.1016/j.rse.2017.04.030 es_ES
dc.description.references Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., … Gobakken, T. 2012. Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 121, 196- 209. https://doi.org/10.1016/J.RSE.2012.02.001 es_ES
dc.description.references Zaldo, V., Moré, G., Pons, X. 2010. Estimación y cartografía de parámetros ecológicos y forestales en tres especies (Quercus ilex L. subsp ilex, Fagus sylvatica L. y Pinus halepensis L.) con datos LiDAR. Revista de Teledetección, 34, 55-68. es_ES
dc.description.references Zeide, B. 2004. Stand Density and Canopy Gaps. In K. F. Connor (Ed.), Gen. Tech. Rep. SRS 71. US Department of Agriculture, Forest Service, Southern Research Station (pp. 79-183). Biloxi, Mississippi: USDA Forest Service Southern Research Station, Asheville, North Carolina. es_ES
dc.description.references Zhang, J., de Gier, A., Xing, Y., Sohn, G. 2011. Full Waveform-based Analysis for Forest Type Information Derivation from Large Footprint Spaceborne Lidar Data. Photogrammetric Engineering & Remote Sensing, 77(3), 281-290. https://doi.org/10.14358/PERS.77.3.281 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem