- -

Copies of c0 in the space of Pettis integrable functions revisited

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Copies of c0 in the space of Pettis integrable functions revisited

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Legua, M. es_ES
dc.contributor.author Sánchez Ruiz, Luis Manuel es_ES
dc.date.accessioned 2019-01-10T21:03:29Z
dc.date.available 2019-01-10T21:03:29Z
dc.date.issued 2015 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/115243
dc.description.abstract [EN] If is a finite measure space and a Banach space whose dual has a countable norming set we provide a proof of the fact that the space of all weakly -measurable (classes of scalarly equivalent) Pettis integrable functions : of finite variation, equipped with the variation norm, contains a copy of if and only if does. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pettis integrable es_ES
dc.subject Countably additive vector measure es_ES
dc.subject Copy of c(0) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Copies of c0 in the space of Pettis integrable functions revisited es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-014-0205-3 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Legua, M.; Sánchez Ruiz, LM. (2015). Copies of c0 in the space of Pettis integrable functions revisited. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 109:623-626. doi:10.1007/s13398-014-0205-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s13398-014-0205-3 es_ES
dc.description.upvformatpinicio 623 es_ES
dc.description.upvformatpfin 626 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 109 es_ES
dc.relation.pasarela S\303784 es_ES
dc.description.references Bourgain, J.: An averaging result for $$c_0$$ c 0 -sequences. Bull. Soc. Math. Belg. 30, 83–87 (1978) es_ES
dc.description.references Carothers, N.L.: A Short Course in Banach Space Theory. Cambridge University Press, Cambridge (2005) es_ES
dc.description.references Cembranos, P., Mendoza, J.: Banach Spaces of Continuous Vector-Valued Functions, Lecture Notes in Math. 1676. Springer, Berlin (1997) es_ES
dc.description.references Diestel, J.: Sequences and Series in Banach Spaces, Graduated Texts in Math. 92. Springer, New York, Berlin (1984) es_ES
dc.description.references Diestel, J., Uhl, J.: Vector measures, Math Surveys 15. Amer. Math. Soc, Providence (1977) es_ES
dc.description.references Dunford, N., Schwartz, J.T.: Linear Operators Part I. General Theory. Wiley, New York (1988) es_ES
dc.description.references Ferrando, J.C.: On sums of Pettis integrable random elements. Quaest. Math. 25, 311–316 (2002) es_ES
dc.description.references Ferrando, J.C.: Copies of $$c_0$$ c 0 in the space of Pettis integrable functions with integrals of finite variation. Acta Math. Hungar. 135, 24–30 (2012) es_ES
dc.description.references Ferrando, J.C., Sánchez Ruiz, L.M.: Embedding $$c_0$$ c 0 in $$bvca\left( \Sigma, X\right) $$ b v c a Σ , X . Czech. Math. J. 57, 679–688 (2007) es_ES
dc.description.references Freniche, F.J.: Embedding $$c_0$$ c 0 in the space of Pettis integrable functions. Quaest. Math. 21, 261–267 (1998) es_ES
dc.description.references Freniche, F.J.: Correction to the paper ‘Embedding c0 in the space of Pettis integrable functions’. Quaest. Math. 29, 133–134 (2006) es_ES
dc.description.references Köthe, G.: Topological Vector Spaces I. Springer, Berlin (1983) es_ES
dc.description.references Legua, M., Sánchez Ruiz, L.M.: Evaluating norms of Pettis integrable functions. Proc. Roy. Soc. Edinb. 139A, 1255–1259 (2009) es_ES
dc.description.references Musiał, K.: Pettis Integral, in Handbook of Measure Theory. Elsevier, Amsterdam (2012) es_ES
dc.description.references Saab, E., Saab, P.: A dual geometric characterization of Banach spaces not containing $$\ell _1$$ ℓ 1 . Pacif. J. Math. 105, 415–425 (1983) es_ES
dc.description.references van Dulst D.: Characterizations of Banach spaces not containing $$\ell _1$$ ℓ 1 , CWI. Tract 59 (1989) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem