Mostrar el registro sencillo del ítem
dc.contributor.author | Legua, M. | es_ES |
dc.contributor.author | Sánchez Ruiz, Luis Manuel | es_ES |
dc.date.accessioned | 2019-01-10T21:03:29Z | |
dc.date.available | 2019-01-10T21:03:29Z | |
dc.date.issued | 2015 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/115243 | |
dc.description.abstract | [EN] If is a finite measure space and a Banach space whose dual has a countable norming set we provide a proof of the fact that the space of all weakly -measurable (classes of scalarly equivalent) Pettis integrable functions : of finite variation, equipped with the variation norm, contains a copy of if and only if does. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Pettis integrable | es_ES |
dc.subject | Countably additive vector measure | es_ES |
dc.subject | Copy of c(0) | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Copies of c0 in the space of Pettis integrable functions revisited | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-014-0205-3 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Legua, M.; Sánchez Ruiz, LM. (2015). Copies of c0 in the space of Pettis integrable functions revisited. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 109:623-626. doi:10.1007/s13398-014-0205-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s13398-014-0205-3 | es_ES |
dc.description.upvformatpinicio | 623 | es_ES |
dc.description.upvformatpfin | 626 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 109 | es_ES |
dc.relation.pasarela | S\303784 | es_ES |
dc.description.references | Bourgain, J.: An averaging result for $$c_0$$ c 0 -sequences. Bull. Soc. Math. Belg. 30, 83–87 (1978) | es_ES |
dc.description.references | Carothers, N.L.: A Short Course in Banach Space Theory. Cambridge University Press, Cambridge (2005) | es_ES |
dc.description.references | Cembranos, P., Mendoza, J.: Banach Spaces of Continuous Vector-Valued Functions, Lecture Notes in Math. 1676. Springer, Berlin (1997) | es_ES |
dc.description.references | Diestel, J.: Sequences and Series in Banach Spaces, Graduated Texts in Math. 92. Springer, New York, Berlin (1984) | es_ES |
dc.description.references | Diestel, J., Uhl, J.: Vector measures, Math Surveys 15. Amer. Math. Soc, Providence (1977) | es_ES |
dc.description.references | Dunford, N., Schwartz, J.T.: Linear Operators Part I. General Theory. Wiley, New York (1988) | es_ES |
dc.description.references | Ferrando, J.C.: On sums of Pettis integrable random elements. Quaest. Math. 25, 311–316 (2002) | es_ES |
dc.description.references | Ferrando, J.C.: Copies of $$c_0$$ c 0 in the space of Pettis integrable functions with integrals of finite variation. Acta Math. Hungar. 135, 24–30 (2012) | es_ES |
dc.description.references | Ferrando, J.C., Sánchez Ruiz, L.M.: Embedding $$c_0$$ c 0 in $$bvca\left( \Sigma, X\right) $$ b v c a Σ , X . Czech. Math. J. 57, 679–688 (2007) | es_ES |
dc.description.references | Freniche, F.J.: Embedding $$c_0$$ c 0 in the space of Pettis integrable functions. Quaest. Math. 21, 261–267 (1998) | es_ES |
dc.description.references | Freniche, F.J.: Correction to the paper ‘Embedding c0 in the space of Pettis integrable functions’. Quaest. Math. 29, 133–134 (2006) | es_ES |
dc.description.references | Köthe, G.: Topological Vector Spaces I. Springer, Berlin (1983) | es_ES |
dc.description.references | Legua, M., Sánchez Ruiz, L.M.: Evaluating norms of Pettis integrable functions. Proc. Roy. Soc. Edinb. 139A, 1255–1259 (2009) | es_ES |
dc.description.references | Musiał, K.: Pettis Integral, in Handbook of Measure Theory. Elsevier, Amsterdam (2012) | es_ES |
dc.description.references | Saab, E., Saab, P.: A dual geometric characterization of Banach spaces not containing $$\ell _1$$ ℓ 1 . Pacif. J. Math. 105, 415–425 (1983) | es_ES |
dc.description.references | van Dulst D.: Characterizations of Banach spaces not containing $$\ell _1$$ ℓ 1 , CWI. Tract 59 (1989) | es_ES |