- -

Evaluation of environmental sustainability threshold of “humid” and “dry” building systems, for reduction of embodied carbon (CO2)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of environmental sustainability threshold of “humid” and “dry” building systems, for reduction of embodied carbon (CO2)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Di Ruocco, Giacomo es_ES
dc.contributor.author Melella, Roberta es_ES
dc.date.accessioned 2019-01-14T07:56:01Z
dc.date.available 2019-01-14T07:56:01Z
dc.date.issued 2018-12-26
dc.identifier.uri http://hdl.handle.net/10251/115354
dc.description.abstract [EN] The New Italian Procurement Code (Legislative Decree No. 50/2016), in compliance with the EU directives 26/02/2014, has introduced, among other things, the possibility of obtaining awards, during the awarding of the contract , in terms of reducing the estimated energy impact in the life cycle of the work. The objective of this study was to direct architectural design towards conscious choices that are compatible with environmental legislation. The study, therefore, aimed to analyze the characteristics of the most widespread (wet and dry) construction systems, in order to determine environmental sustainability thresholds referring to each of the four systems hypothesized for the development of the model. The simulated cases for the definition of the model refer to the following construction systems: M1 (structural system in load-bearing masonry); M2 (constructive system with frame structure and traditional brick cladding); M3 (constructive system with metallic bearing structure and dry stratified shell); M4 (constructive system with wooden supporting structure and dry stratified shell). The results indicated design scenarios aimed at using constructive systems that present advantages in terms of disassembly, recovery and reuse of the various components; in addition to the attitude of such systems, to be resilient, or to be able to be adapted and transformed during the life cycle of the building organism. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof VITRUVIO - International Journal of Architectural Technology and Sustainability
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Sustainable architecture design es_ES
dc.subject Eco-architecture es_ES
dc.subject Embodied energy es_ES
dc.subject Embodied carbon es_ES
dc.subject Life cycle assessment es_ES
dc.title Evaluation of environmental sustainability threshold of “humid” and “dry” building systems, for reduction of embodied carbon (CO2) es_ES
dc.type Artículo es_ES
dc.date.updated 2019-01-09T12:23:16Z
dc.identifier.doi 10.4995/vitruvio-ijats.2018.11020
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Di Ruocco, G.; Melella, R. (2018). Evaluation of environmental sustainability threshold of “humid” and “dry” building systems, for reduction of embodied carbon (CO2). VITRUVIO - International Journal of Architectural Technology and Sustainability. 3(2):17-35. https://doi.org/10.4995/vitruvio-ijats.2018.11020 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/vitruvio-ijats.2018.11020 es_ES
dc.description.upvformatpinicio 17 es_ES
dc.description.upvformatpfin 35 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3
dc.description.issue 2
dc.identifier.eissn 2444-9091
dc.description.references Altamura P. (2016), Costruire a zero rifiuti, Strategie e strumenti per laprevenzione e l'upcycling dei materiali di scarto in edilizia, (1 edizione) Franco Angeli Editore, Milano es_ES
dc.description.references Benjamin D. (2017), Embodied Energy and De-sign: Making Architecture Between Metrics and Narratives, Lars Muller Publishers, Zurich Braungart M., Mcdonough W. (2003), Cradle to Cradle: Remaking the Way We Make Things, North Point Pr; 1 edizione es_ES
dc.description.references Cellura T., Cellura L. (2018), Il nuovo manuale dei Criteri minimi Ambientali in Edilizia, Mag-gioli Editore, Rimini es_ES
dc.description.references Commoner B. (1971), The Closing Circle: Nature, Man, and Technology, Knopf, New York es_ES
dc.description.references Di Micco S. (2010), La casa ecologica prefabbricata, Maggioli Editore, Rimini es_ES
dc.description.references Di Ruocco G. (2007), Dettagli di facciata. Tra tettonica e rivestimento dell'involucro edilizio, CUES Edizioni, Fisciano (Salerno) es_ES
dc.description.references Di Ruocco G. (2012), Oltre la facciata. L'evoluzione tecnológica dell'involucro edilizio tra tradizione e innovazione, CUES Edizioni, Fisciano (Salerno) es_ES
dc.description.references Fantozzi F., Scatizzi G., Venturelli F. (2017), La certificazione energetica e ambientale LEED, guida ai principi, Hoepli, Milano es_ES
dc.description.references Frattari A. (2014), Soluzioni costruttive per edifici in legno, Rockwool Italia, Milano es_ES
dc.description.references Griffin P.W., Hammond G., Norman J.B. (2016), Industrial energy use and carbon emissions reduction: A UK perspective. In Wiley Interdisciplinary Reviews: Energy and Environment - March 2016. https://doi.org/10.1002/wene.212 es_ES
dc.description.references Hammond G., Jones C.I. (2009), Embodied Carbon: The Concealed Impact of Residential Construction, Green Energy and Technology 31:367-384. https://doi.org/10.1007/978-1-4419-1017-2_23 es_ES
dc.description.references Kumanayake R.B., Luo H.B. (2017), A tool for assessing life cycle CO2 emissions of buildings in Sri Lanka, Building and Environment, Vol. 128, 15 January 2018, pp. 272-286, ELSEVIER. https://doi.org/10.1016/j.buildenv.2017.11.042 es_ES
dc.description.references McDonough W., Braungart M. (2002), Cradle to Cradle: Remaking the Way We Make Things. New York: North Point Press. es_ES
dc.description.references Malmqvist T., Nehasilova M., Moncaster A., Birgisdottir H., Nygaard Rasmussen F., Houlihan Wiberg A., Potting J. (2018), Design and construction strategies for reducing embodied impacts from buildings - Case study analysis, Eneregy&Building, ELSEVIER, pp.35-47. https://doi.org/10.1016/j.enbuild.2018.01.033 es_ES
dc.description.references Molocchi A. (1998), La scommessa di Kyoto. Politiche di protezione del clima e sviluppo sostenibile, 1a edizione 1998, Franco Angeli Edizioni, Milano es_ES
dc.description.references Monticelli C. (2013), Life Cycle Design in Architettura, Maggioli Editore, Rimini es_ES
dc.description.references Nestico' A., Moffa R. (2018), Economic analysis and operational research tools for estimating productivity levels in off-site construction, Vol. 20. Pag.107-126, ISSN:2036-2404. es_ES
dc.description.references Nivelli M. (2012), Soluzioni Tecniche sostenibili e qualità dell'architettura, Dottorato di Ricerca in Ingegneria delle Strutture e del Recupero Edilizio ed Urbano - Università degli Studi di Salerno, a.a. 2009-2012 es_ES
dc.description.references Pomponi F., De Wolf C., Moncaster A. (2018), Embodied Carbon in Buildings, Springer. https://doi.org/10.1007/978-3-319-72796-7 es_ES
dc.description.references Hammond G., Jones C. (2008), Inventory of carbon & energy (ICE), University of Bath, version 1.6a es_ES
dc.description.references Sabnis A.S., Mysore P., Anant S. (2015), Construction Materials-Embodied Energy Foot-print-Global Warming; Interaction. es_ES
dc.description.references Santos D. (2010), Strutture e Case prefabbricate, Hoepli, Milano Saravanan J., Sridhar M. (2015), Construction Technology, Challenges and Possibilities of Low-Carbon Buildings in India, SSRG International Journal of Civil Engineering (SSRG-IJCE) - volume 2 Issue 11 November 2015, pp. 6-11. https://doi.org/10.14445/23488352/IJCE-V2I11P102 es_ES
dc.description.references Sengupta N., Roy S., Guha H. (2018), Assessing embodied GHG emission reduction potential of cost-effective technologies for construction of residential buildings of Economically Weaker Section in India. Asian Journal of Civil Engineering 19 (2), pp.139-156. https://doi.org/10.1007/s42107-018-0013-8 es_ES
dc.description.references Sicignano E. (2011), I campus di Fisciano e Lancusi. Ediz. Illustrata, Gangemi Editore, Roma es_ES
dc.description.references Venkatarama R. (2009), Sustainable materials for low carbon buildings. In International Journal of Low-Carbon Technologies - August 2009. https://doi.org/10.1093/ijlct/ctp025 es_ES
dc.description.references Victoria, M., Perera, S., Davies, A. (2016), A pragmatic approach for embodied carbon estimating in buildings. In newDist: proceedings of sustainable built environment (SBE16): towards post-carbon cities, 18-19 February 2016, Tori-no, Italy. Torino: DIST [online], pages 470-480. https://doi.org/10.1093/ijlct/ctp025 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem