Mostrar el registro sencillo del ítem
dc.contributor.author | Di Ruocco, Giacomo | es_ES |
dc.contributor.author | Melella, Roberta | es_ES |
dc.date.accessioned | 2019-01-14T07:56:01Z | |
dc.date.available | 2019-01-14T07:56:01Z | |
dc.date.issued | 2018-12-26 | |
dc.identifier.uri | http://hdl.handle.net/10251/115354 | |
dc.description.abstract | [EN] The New Italian Procurement Code (Legislative Decree No. 50/2016), in compliance with the EU directives 26/02/2014, has introduced, among other things, the possibility of obtaining awards, during the awarding of the contract , in terms of reducing the estimated energy impact in the life cycle of the work. The objective of this study was to direct architectural design towards conscious choices that are compatible with environmental legislation. The study, therefore, aimed to analyze the characteristics of the most widespread (wet and dry) construction systems, in order to determine environmental sustainability thresholds referring to each of the four systems hypothesized for the development of the model. The simulated cases for the definition of the model refer to the following construction systems: M1 (structural system in load-bearing masonry); M2 (constructive system with frame structure and traditional brick cladding); M3 (constructive system with metallic bearing structure and dry stratified shell); M4 (constructive system with wooden supporting structure and dry stratified shell). The results indicated design scenarios aimed at using constructive systems that present advantages in terms of disassembly, recovery and reuse of the various components; in addition to the attitude of such systems, to be resilient, or to be able to be adapted and transformed during the life cycle of the building organism. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | VITRUVIO - International Journal of Architectural Technology and Sustainability | |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Sustainable architecture design | es_ES |
dc.subject | Eco-architecture | es_ES |
dc.subject | Embodied energy | es_ES |
dc.subject | Embodied carbon | es_ES |
dc.subject | Life cycle assessment | es_ES |
dc.title | Evaluation of environmental sustainability threshold of “humid” and “dry” building systems, for reduction of embodied carbon (CO2) | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-01-09T12:23:16Z | |
dc.identifier.doi | 10.4995/vitruvio-ijats.2018.11020 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Di Ruocco, G.; Melella, R. (2018). Evaluation of environmental sustainability threshold of “humid” and “dry” building systems, for reduction of embodied carbon (CO2). VITRUVIO - International Journal of Architectural Technology and Sustainability. 3(2):17-35. https://doi.org/10.4995/vitruvio-ijats.2018.11020 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/vitruvio-ijats.2018.11020 | es_ES |
dc.description.upvformatpinicio | 17 | es_ES |
dc.description.upvformatpfin | 35 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 2444-9091 | |
dc.description.references | Altamura P. (2016), Costruire a zero rifiuti, Strategie e strumenti per laprevenzione e l'upcycling dei materiali di scarto in edilizia, (1 edizione) Franco Angeli Editore, Milano | es_ES |
dc.description.references | Benjamin D. (2017), Embodied Energy and De-sign: Making Architecture Between Metrics and Narratives, Lars Muller Publishers, Zurich Braungart M., Mcdonough W. (2003), Cradle to Cradle: Remaking the Way We Make Things, North Point Pr; 1 edizione | es_ES |
dc.description.references | Cellura T., Cellura L. (2018), Il nuovo manuale dei Criteri minimi Ambientali in Edilizia, Mag-gioli Editore, Rimini | es_ES |
dc.description.references | Commoner B. (1971), The Closing Circle: Nature, Man, and Technology, Knopf, New York | es_ES |
dc.description.references | Di Micco S. (2010), La casa ecologica prefabbricata, Maggioli Editore, Rimini | es_ES |
dc.description.references | Di Ruocco G. (2007), Dettagli di facciata. Tra tettonica e rivestimento dell'involucro edilizio, CUES Edizioni, Fisciano (Salerno) | es_ES |
dc.description.references | Di Ruocco G. (2012), Oltre la facciata. L'evoluzione tecnológica dell'involucro edilizio tra tradizione e innovazione, CUES Edizioni, Fisciano (Salerno) | es_ES |
dc.description.references | Fantozzi F., Scatizzi G., Venturelli F. (2017), La certificazione energetica e ambientale LEED, guida ai principi, Hoepli, Milano | es_ES |
dc.description.references | Frattari A. (2014), Soluzioni costruttive per edifici in legno, Rockwool Italia, Milano | es_ES |
dc.description.references | Griffin P.W., Hammond G., Norman J.B. (2016), Industrial energy use and carbon emissions reduction: A UK perspective. In Wiley Interdisciplinary Reviews: Energy and Environment - March 2016. https://doi.org/10.1002/wene.212 | es_ES |
dc.description.references | Hammond G., Jones C.I. (2009), Embodied Carbon: The Concealed Impact of Residential Construction, Green Energy and Technology 31:367-384. https://doi.org/10.1007/978-1-4419-1017-2_23 | es_ES |
dc.description.references | Kumanayake R.B., Luo H.B. (2017), A tool for assessing life cycle CO2 emissions of buildings in Sri Lanka, Building and Environment, Vol. 128, 15 January 2018, pp. 272-286, ELSEVIER. https://doi.org/10.1016/j.buildenv.2017.11.042 | es_ES |
dc.description.references | McDonough W., Braungart M. (2002), Cradle to Cradle: Remaking the Way We Make Things. New York: North Point Press. | es_ES |
dc.description.references | Malmqvist T., Nehasilova M., Moncaster A., Birgisdottir H., Nygaard Rasmussen F., Houlihan Wiberg A., Potting J. (2018), Design and construction strategies for reducing embodied impacts from buildings - Case study analysis, Eneregy&Building, ELSEVIER, pp.35-47. https://doi.org/10.1016/j.enbuild.2018.01.033 | es_ES |
dc.description.references | Molocchi A. (1998), La scommessa di Kyoto. Politiche di protezione del clima e sviluppo sostenibile, 1a edizione 1998, Franco Angeli Edizioni, Milano | es_ES |
dc.description.references | Monticelli C. (2013), Life Cycle Design in Architettura, Maggioli Editore, Rimini | es_ES |
dc.description.references | Nestico' A., Moffa R. (2018), Economic analysis and operational research tools for estimating productivity levels in off-site construction, Vol. 20. Pag.107-126, ISSN:2036-2404. | es_ES |
dc.description.references | Nivelli M. (2012), Soluzioni Tecniche sostenibili e qualità dell'architettura, Dottorato di Ricerca in Ingegneria delle Strutture e del Recupero Edilizio ed Urbano - Università degli Studi di Salerno, a.a. 2009-2012 | es_ES |
dc.description.references | Pomponi F., De Wolf C., Moncaster A. (2018), Embodied Carbon in Buildings, Springer. https://doi.org/10.1007/978-3-319-72796-7 | es_ES |
dc.description.references | Hammond G., Jones C. (2008), Inventory of carbon & energy (ICE), University of Bath, version 1.6a | es_ES |
dc.description.references | Sabnis A.S., Mysore P., Anant S. (2015), Construction Materials-Embodied Energy Foot-print-Global Warming; Interaction. | es_ES |
dc.description.references | Santos D. (2010), Strutture e Case prefabbricate, Hoepli, Milano Saravanan J., Sridhar M. (2015), Construction Technology, Challenges and Possibilities of Low-Carbon Buildings in India, SSRG International Journal of Civil Engineering (SSRG-IJCE) - volume 2 Issue 11 November 2015, pp. 6-11. https://doi.org/10.14445/23488352/IJCE-V2I11P102 | es_ES |
dc.description.references | Sengupta N., Roy S., Guha H. (2018), Assessing embodied GHG emission reduction potential of cost-effective technologies for construction of residential buildings of Economically Weaker Section in India. Asian Journal of Civil Engineering 19 (2), pp.139-156. https://doi.org/10.1007/s42107-018-0013-8 | es_ES |
dc.description.references | Sicignano E. (2011), I campus di Fisciano e Lancusi. Ediz. Illustrata, Gangemi Editore, Roma | es_ES |
dc.description.references | Venkatarama R. (2009), Sustainable materials for low carbon buildings. In International Journal of Low-Carbon Technologies - August 2009. https://doi.org/10.1093/ijlct/ctp025 | es_ES |
dc.description.references | Victoria, M., Perera, S., Davies, A. (2016), A pragmatic approach for embodied carbon estimating in buildings. In newDist: proceedings of sustainable built environment (SBE16): towards post-carbon cities, 18-19 February 2016, Tori-no, Italy. Torino: DIST [online], pages 470-480. https://doi.org/10.1093/ijlct/ctp025 | es_ES |