- -

Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Pee

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Pee

Show simple item record

Files in this item

dc.contributor.author Talens Vila, Clara es_ES
dc.contributor.author Castro Giraldez, Marta es_ES
dc.contributor.author Fito Suñer, Pedro José es_ES
dc.date.accessioned 2019-01-18T08:10:59Z
dc.date.available 2019-01-18T08:10:59Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1935-5130 es_ES
dc.identifier.uri http://hdl.handle.net/10251/115813
dc.description.abstract [EN] Drying is one of the most cost-effective methods of worthwhile by-product valorisation. This study had two main objectives. The first was to determine the effect of hot air drying (HAD) combined with microwave (MW) irradiation on the treatment kinetics and the macrostructural and microstructural properties of the dried product. The second aim was to develop engineering tools to predict the extent of dehydration. Drying was performed using hot air at 55 A degrees C and the combined (HAD + MW) treatment at different power intensities (2, 4, and 6 W/g). After 5, 15, 40, 60, and 120 min, the mass, surface, volume, water activity and moisture were measured in fresh and dried samples. Sorption isotherms were obtained and fitted to the GAB model, with high correlation coefficients. The macroscopic and microscopic analyses showed shrinkage and swelling in the peel tissue caused by the MW treatment. The HAD + MW methods not only resulted in increased moisture reduction but also induced microstructural changes that generated higher sorption capacity. es_ES
dc.description.sponsorship The authors would like to thank the Basque Government for the financial support of the project (LasaiFood). They also acknowledge the financial support from the Spanish Ministerio de Economia, Industria y Competitividad, Programa Estatal de I+D+i orientada a los Retos de la Sociedad AGL2016-80643-R. This paper is contribution no. 777 from AZTI (Food Research Division). The authors would like to thank the Electronic Microscopy Service of the Universidad Politecnica de Valencia for its assistance in the use of Cryo-SEM.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation AEI/AGL2016-80643-R es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hot air microwave drying es_ES
dc.subject  Orange peel es_ES
dc.subject  Isotherm es_ES
dc.subject  Isosteric heat es_ES
dc.subject  Microstructure es_ES
dc.subject  Water retention capacity  es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Pee es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-017-2041-x es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-04-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Talens Vila, C.; Castro Giraldez, M.; Fito Suñer, PJ. (2018). Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Pee. Food and Bioprocess Technology. 11(4):723-734. doi:10.1007/s11947-017-2041-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11947-017-2041-x es_ES
dc.description.upvformatpinicio 723 es_ES
dc.description.upvformatpfin 734 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\350206 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.relation.references Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2002). Moisture sorption isotherm characteristics of food products: a review. Food and Bioproducts Processing, 80(2), 118–128. https://doi.org/10.1205/09603080252938753 . es_ES
dc.relation.references Andrade, R. D., Lemus, R., & Pérez, C. E. (2011). Models of sorption isotherms for food: uses and limitations. Vitae, 18(3), 325–334. es_ES
dc.relation.references Bejar, A. K., Ghanem, N., Mihoubi, D., Kechaou, N., & Mihoubi, N. B. (2011). Effect of infrared drying on drying kinetics, color, total phenols and water and oil holding capacities of orange (Citrus sinensis) peel and leaves. International Journal of Food Engineering, 7(5). https://doi.org/10.2202/1556-3758.2222 . es_ES
dc.relation.references Bergese, P. (2006). Specific heat, polarization and heat conduction in microwave heating systems: a nonequilibrium thermodynamic point of view. Acta Materialia, 54(7), 1843–1849. https://doi.org/10.1016/j.actamat.2005.11.042 . es_ES
dc.relation.references Castro-Giráldez, M., Fito, P. J., Chenoll, C., & Fito, P. (2010). Development of a dielectric spectroscopy technique for the determination of apple (Granny Smith) maturity. Innovative Food Science & Emerging Technologies, 11(4), 749–754. https://doi.org/10.1016/j.ifset.2010.08.002 . es_ES
dc.relation.references Castro-Giráldez, M., Fito, P. J., Dalla Rosa, M., & Fito, P. (2011a). Application of microwaves dielectric spectroscopy for controlling osmotic dehydration of kiwifruit (Actinidia deliciosa cv Hayward). Innovative Food Science & Emerging Technologies, 12(4), 623–627. https://doi.org/10.1016/j.ifset.2011.06.013 . es_ES
dc.relation.references Castro-Giráldez, M., Fito, P. J., & Fito, P. (2011b). Application of microwaves dielectric spectroscopy for controlling long time osmotic dehydration of parenchymatic apple tissue. Journal of Food Engineering, 104(2), 227–233. https://doi.org/10.1016/j.jfoodeng.2010.10.034 . es_ES
dc.relation.references Demirel, Y., & Sandler, S. I. (2001). Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport. International Journal of Heat and Mass Transfer, 44(13), 2439–2451. https://doi.org/10.1016/S0017-9310(00)00291-X . es_ES
dc.relation.references Edrisi Sormoli, M., & Langrish, T. A. G. (2015). Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder. LWT—Food Science and Technology, 62(1, part 2), 875–882. https://doi.org/10.1016/j.lwt.2014.09.064 . es_ES
dc.relation.references Fava, F., Zanaroli, G., Vannini, L., Guerzoni, E., Bordoni, A., Viaggi, D., Robertson, J., Waldron, K., Bald, C., Esturo, A., Talens, C., Tueros, I., Cebrián, M., Sebők, A., Kuti, T., Broeze, J., Macias, M., & Brendle, H. G. (2013). New advances in the integrated management of food processing by-products in Europe: sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU). New Biotechnology, 30(6), 647–655. https://doi.org/10.1016/j.nbt.2013.05.001 . es_ES
dc.relation.references Fernández-López, J., Sendra-Nadal, E., Navarro, C., Sayas, E., Viuda-Martos, M., & Alvarez, J. A. P. (2009). Storage stability of a high dietary fibre powder from orange by-products. International Journal of Food Science and Technology, 44(4), 748–756. https://doi.org/10.1111/j.1365-2621.2008.01892.x . es_ES
dc.relation.references Ghanem, N., Mihoubi, D., Kechaou, N., & Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: effect on water and oil retention capacities, color, shrinkage and total phenols content. Industrial Crops and Products, 40, 167–177. https://doi.org/10.1016/j.indcrop.2012.03.009 . es_ES
dc.relation.references Gómez, A., López, R., Esturo, A., Bald, C., Tueros, I., Talens, C., & Raynaud, C. (2015). From waste products to raw materials for the development of new foods. Proceedings of the Institution of Civil Engineers: Waste and Resource Management, 168(2), 55–62. https://doi.org/10.1680/warm.13.00038 . es_ES
dc.relation.references Hossain, M. D., Bala, B. K., Hossain, M. A., & Mondol, M. R. A. (2001). Sorption isotherms and heat of sorption of pineapple. Journal of Food Engineering, 48(2), 103–107. https://doi.org/10.1016/s0260-8774(00)00132-1 . es_ES
dc.relation.references Igual, M., Contreras, C., & Martinez-Navarrete, N. (2010). Non-conventional techniques to obtain grapefruit jam. Innovative Food Science & Emerging Technologies, 11(2), 335–341. https://doi.org/10.1016/j.ifset.2010.01.009 . es_ES
dc.relation.references Kowalski, S. J., Rajewska, K., & Rybicki, A. (2005). Stresses generated during convective and microwave drying. Drying Technology, 23(9–11), 1875–1893. https://doi.org/10.1080/07373930500210226 . es_ES
dc.relation.references Labuza, T. P., & Altunakar, B. (2007). Water activity prediction and moisture sorption isotherms. In G. V. Barbosa-Cánovas, A. J. Fontana, S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods: Fundamentals and Applications (Vol. 109–154). Iowa: IFT Press and Blackwell Publishing. https://doi.org/10.1002/9780470376454.ch5 . es_ES
dc.relation.references Larrauri, J. A. (1999). New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology, 10(1), 3–8. https://doi.org/10.1016/S0924-2244(99)00016-3 . es_ES
dc.relation.references Martín, M. E., Martínez-Navarrete, N., Chiralt, A., & Fito, P. (2003). Diseño y construcción de una instalación experimental para el estudio de la cinética de secado combinado por aire caliente y microondas. Alimentación Equipos y Tecnología, 22(181), 101–107. es_ES
dc.relation.references Quirijns, E. J., van Boxtel, A. J. B., van Loon, W. K. P., & van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85(11), 1805–1814. https://doi.org/10.1002/jsfa.2140 . es_ES
dc.relation.references Rizvi, S. S. H., & Benado, A. L. (1984). Thermodynamic properties of dehydrated foods. Food Technology, 38(3), 83–92. es_ES
dc.relation.references Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration properties of dietary fibre and resistant starch: a European collaborative study. Lebensmittel-Wissenschaft und -Technologie, 33(2), 72–79. https://doi.org/10.1006/fstl.1999.0595 . es_ES
dc.relation.references Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science & Technology, 12(11), 401−+. es_ES
dc.relation.references Schiffmann, R. (2001). Microwave processes for the food industry. In A. Datta & R. Anantheswaran (Eds.), Handbook of microwave Technology for Food Applications (pp. 299–352). New York: Marcel Dekker. es_ES
dc.relation.references Talens, C., Castro-Giráldez, M., & Fito, P. J. (2016a). A thermodynamic model for hot-air microwave drying of orange peel. Journal of Food Engineering, 175, 33–42. https://doi.org/10.1016/j.jfoodeng.2015.12.001 . es_ES
dc.relation.references Talens, C., Castro-Giráldez, M., & Fito, P. J. (2016b). Study of the effect of microwave power coupled with hot air drying on orange peel by dielectric spectroscopy. LWT - Food Science and Technology, 66, 622–628. https://doi.org/10.1016/j.lwt.2015.11.015 . es_ES
dc.relation.references Talens, C., Arboleya, J. C., Castro-Giraldez, M., & Fito, P. J. (2017). Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel. LWT - Food Science and Technology, 77, 110–118. https://doi.org/10.1016/j.lwt.2016.11.036 . es_ES
dc.relation.references Traffano-Schiffo, M. V., Castro-Giráldez, M., Fito, P. J., & Balaguer, N. (2014). Thermodynamic model of meat drying by infrared thermography. Journal of Food Engineering, 128, 103–110. https://doi.org/10.1016/j.jfoodeng.2013.12.024 . es_ES
dc.relation.references Traffano-Schiffo, M. V., Castro-Giráldez, M., Colom, R. J., & Fito, P. J. (2015). Study of the application of dielectric spectroscopy to predict the water activity of meat during drying process. Journal of Food Engineering, 166, 285–290. https://doi.org/10.1016/j.jfoodeng.2015.06.030 . es_ES
dc.relation.references van den Berg, C., & Bruin, S. (1981). Water activity and its estimation in food systems—theoretical aspects. In L. B. Rockland & G. F. Stewart (Eds.), Water Activity: Influences on Food Quality (pp. 1–61). New York: Academic Press. https://doi.org/10.1016/B978-0-12-591350-8.50007-3 . es_ES
dc.relation.references Waldron, K. W. (2009). Part III exploitation of co-products as food and feed ingredients. In K. W. Waldron (Ed.), Handbook of waste management and co-product recovery in food processing (pp. 255–265). UK: Elsevier Science. https://doi.org/10.1533/9781845697051 . es_ES
dc.relation.references Yan, Z., Sousa-Gallagher, M. J., & Oliveira, F. A. R. (2008). Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. Journal of Food Engineering, 86(3), 342–348. https://doi.org/10.1016/j.jfoodeng.2007.10.009 . es_ES


This item appears in the following Collection(s)

Show simple item record