- -

Análisis regional de frecuencias de las precipitaciones diarias extremas en Navarra. Elaboración de los mapas de cuantiles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis regional de frecuencias de las precipitaciones diarias extremas en Navarra. Elaboración de los mapas de cuantiles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López, J.J. es_ES
dc.contributor.author Goñi, M. es_ES
dc.contributor.author San Martín, I. es_ES
dc.contributor.author Erro, J. es_ES
dc.date.accessioned 2019-02-05T13:17:59Z
dc.date.available 2019-02-05T13:17:59Z
dc.date.issued 2019-01-30
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/116430
dc.description.abstract [EN] The determination of the law of frequency of precipitations is essential for the design of different hydraulic infrastructures as well as for the analysis and determination of flood areas. The objective of this paper is to present the quantiles of the extreme daily rainfall in Navarre, obtained through a regional frequency analysis, and its spatial representation. 142 manual rainfall stations, located in the Autonomous Community of Navarra and in the surrounding area, have been considered for the study. The duration of registration of the series is greater than 20 years. The Regional Frequency Analysis has been carried out according to the Hosking and Wallis methodology obtaining six homogeneous regions and their most appropriate distribution functions. The mapping has been made applying two interpolation methods: the inverse distance weighted; and the ordinary geostatistical Kriging. The selected method has been the Kriging. es_ES
dc.description.abstract [ES] La determinación de la ley de frecuencias de precipitaciones resulta imprescindible para el diseño de diferentes infraestructuras hidráulicas así como para el análisis y determinación de zonas inundables. El objetivo de este artículo es presentar los cuantiles de las precipitaciones diarias extremas en el territorio de la Comunidad Foral de Navarra, obtenidos mediante un análisis regional de frecuencia (ARF), y su representación espacial. Se ha partido de las 142 estaciones pluviométricas manuales, localizadas en la Comunidad Foral de Navarra y en el entorno de la misma, con duración de registro superior a 20 años. El Análisis Regional de Frecuencias (ARF) se ha realizado según la metodología de Hosking y Wallis, obteniendo seis regiones homogéneas y sus funciones de distribución más adecuadas. Para la elaboración de los mapas se han aplicado dos métodos de interpolación: el de la distancia inversa ponderada; y el geoestadístico Kriging ordinario. Después del análisis comparativo se ha elegido el Kriging. es_ES
dc.description.sponsorship Este trabajo de investigación se ha financiado y se ha desarrollado gracias al contrato de investigación “OTRI2015021115”, firmado entre la Universidad Pública de Navarra (UPNA) y la empresa pública Navarra de Infraestructuras Locales S.A. (NILSA), titulado “Sistemas de drenaje urbano sostenible. Bioretención. Caracterización de parámetros locales”. Especial agradecimiento a los técnicos de NILSA responsables de la supervisión del trabajo, Ana Marta Las Heras y Gregorio Berrozpe, por su interés, rigor y seguimiento. Expresar nuestro agradecimiento también al Servicio de Meteorología y Climatología de Navarra perteneciente al Gobierno de Navarra por haber facilitado las series de datos de precipitación, especialmente a su responsable D. Joaquín del Valle de Lersundi, que en todo momento ha manifestado su apoyo incondicional, y a Miren Otazu, técnica de Tragsatec. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Ingeniería del Agua
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Precipitaciones máximas en Navarra es_ES
dc.subject Análisis regional de frecuencias de precipitación es_ES
dc.subject Representación espacial de precipitaciones es_ES
dc.subject Interpolación distancia inversa ponderada es_ES
dc.subject Kriging es_ES
dc.subject Maximum rainfall in Navarra es_ES
dc.subject Regional frequency analysis es_ES
dc.subject Spatial representation of rainfall es_ES
dc.subject Inverse distance weighted interpolation es_ES
dc.title Análisis regional de frecuencias de las precipitaciones diarias extremas en Navarra. Elaboración de los mapas de cuantiles es_ES
dc.title.alternative Regional frequency analysis of annual maximum daily rainfall in Navarra. Quantiles mapping es_ES
dc.type Artículo es_ES
dc.date.updated 2019-02-05T09:18:02Z
dc.identifier.doi 10.4995/ia.2019.10058
dc.relation.projectID info:eu-repo/grantAgreement/UPNA//OTRI2015021115/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation López, J.; Goñi, M.; San Martín, I.; Erro, J. (2019). Análisis regional de frecuencias de las precipitaciones diarias extremas en Navarra. Elaboración de los mapas de cuantiles. Ingeniería del Agua. 23(1):33-51. https://doi.org/10.4995/ia.2019.10058 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2019.10058 es_ES
dc.description.upvformatpinicio 33 es_ES
dc.description.upvformatpfin 51 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23
dc.description.issue 1
dc.identifier.eissn 1886-4996
dc.contributor.funder Universidad Pública de Navarra es_ES
dc.description.references Abdi, A., Hassanzadeh, Y., Ouarda, T.B.M.J. 2017. Regional frequency analysis using Growing Neural Gas network. Journal of Hydrology, 550, 92-102. https://doi.org/10.1016/j.jhydrol.2017.04.047 es_ES
dc.description.references Adamowski, K., Alila, Y., Pilon, P.J. 1996. Regional rainfall distribution for Canada. Atmospheric Research, 42, 75-88. https://doi.org/10.1016/0169-8095(95)00054-2 es_ES
dc.description.references Akkala, A., Devabhaktuni, V., Kumar, A. 2010. Interpolation techniques and associated software for environmental data. Environmental Progress and Sustainable Energy, 29(2), 134-141. https://doi.org/10.1002/ep.10455 es_ES
dc.description.references Almasi A., Ahmad J., Toomanian N., 2014. Using OK and IDW methods for prediction the spatial variability of a horizon depth and OM in soils of Shahrekord, Iran. Journal of Environmental Research and Management, 5(8):139-147. es_ES
dc.description.references Álvarez, A.J., Orduña, L.M. 2014. Caracterización del comportamiento estadístico de los caudales máximos estacionales en la España peninsular: Propuesta metodológica para su cálculo. Ingeniería Civil, 174, 51-69. es_ES
dc.description.references Álvarez, M., Puertas, J., Soto, B., Díaz-Fierros, F. 1999. Análisis regional de las precipitaciones máximas en Galicia mediante el método del índice de avenida. Ingeniería Del Agua, 6(4), 379-386. https://doi.org/10.4995/ia.1999.2795 es_ES
dc.description.references Ayoade, J.O. 1976. A preliminary study of magnitude of frequency and distribution of intense rainfall in Nigeria. Hydrological Sciences Journal, 21(3), 419-421. https://doi.org/10.1080/02626667609491650 es_ES
dc.description.references Bilham, E.G. 1936. Classification of heavy falls in short periods. British Rainfall, 1935, 262-280. es_ES
dc.description.references Blanchet, J., Ceresetti, D., Molinié, G., Creutin, J.D. 2016. A regional GEV scale-invariant framework for Intensity-Duration-Frequency analysis. Journal of Hydrology, 540, 82-95. https://doi.org/10.1016/j.jhydrol.2016.06.007 es_ES
dc.description.references Cannarozzo, M., D'asaro, F., Ferro, V. 1995. Regional rainfall and flood frequency analysis for Sicily using the two component extreme value distribution. Hydrological Sciences Journal, 40(1), 19-41. https://doi.org/10.1080/02626669509491388 es_ES
dc.description.references Caporali, E., Cavigli, E., Petrucci, A. 2006. The index rainfall in the regional frequency analysis of extreme events in Tuscany (Italy). Environmetrics, 19, 714-724. https://doi.org/10.1002/env.949 es_ES
dc.description.references Dalrymple, T. 1960. Flood frequency analyses. U.S. Geol. Surv. Water Supply Pap., no. 1543A, p. 80. es_ES
dc.description.references Delhomme, J.P. 1978. Kriging in the hydrosciences. Advances in Water Resources, 1(5), 251-266. https://doi.org/10.1016/0309-1708(78)90039-8 es_ES
dc.description.references García-Marín A.P. 2007. Análisis multifractal de series de datos pluviométricos en Andalucía. Universidad de Córdoba, Servicio de Publicaciones. es_ES
dc.description.references García-Marín, A.P., Estévez, J., Sangüesa-Pool, C., Pizarro-Tapia, R., Ayuso-Muñoz, J.L., Jimenez-Hornero, F.J. 2015. The use of the exponent K(q) function to delimit homogeneous regions in regional frequency analysis of extreme annual daily rainfall. Hydrological Processes, 29, 139-151. https://doi.org/10.1002/hyp.10284 es_ES
dc.description.references G.N. (Gobierno de Navarra). 2001. Estudio Agroclimático de Navarra. Gobierno de Navarra. http://meteo.navarra.es/ es_ES
dc.description.references Gong ,G., Mattevada, S., O'Bryant, S. 2014. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environmental Research, 130, 59-69. https://doi.org/10.1016/j.envres.2013.12.005 es_ES
dc.description.references Gotway, C., Ferguson, R., Hergert, G., Peterson, T. 1996. Comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Science Society of American Journal, 60, 1237-1247. https://doi.org/10.1016/j.envres.2013.12.005 es_ES
dc.description.references Guodong, J., Yancong, L., Wenjie, N. 2003. Comparison between inverse distance weighting method and Kriging. Journal of Changchun University of Technology, 24(3), 53-57. es_ES
dc.description.references Hailegeorgis, T.T., Alfredsen, K. 2017. Regional flood frequency analysis and prediction in ungauged basins including estimation of major uncertainties for mid-Norway. Journal of Hydrology, Regional Studies: 9, 104-126. es_ES
dc.description.references Halbert, K., Nguyen, C.C., Payrastre, O., Gaume, E. 2016. Reducing uncertainty in flood frequency analyses: A comparison of local and regional approaches involving information on extreme historical flood. Journal of Hydrology, 541, 90-98. https://doi.org/10.1016/j.jhydrol.2016.01.017 es_ES
dc.description.references Hengl, T. 2009. A Practical guide to Geostatistical Mapping. http://spatial-analyst.net/book/system/files/Hengl_2009_GEOSTATe2c1w.pdf es_ES
dc.description.references Hosking, J., Wallis J. 1997. Regional frequency analysis: An approach based on L-moments. Cambridge University Press. es_ES
dc.description.references Hosking, J. 2015a. Regional Frequency Analysis using L-Moments, Lmom R Package, Version 2.5. es_ES
dc.description.references Hosking, J. 2015b. Regional Frequency Analysis using L-Moments, LmomRFA R Package, Version 3.0-1. es_ES
dc.description.references Kjeldsen, T.R., Smithers, J., Schulze, R. 2002. Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method. Journal of Hydrology, 255(1), 194-211. https://doi.org/10.1016/S0022-1694(01)00520-0 es_ES
dc.description.references Kumari, M., Basistha, A., Bakimchandra, O., Singh, C.K. 2016. Comparison of Spatial Interpolation Methods for Mapping Rainfall in Indian Himalayas of Uttarakhand Region. In: Raju JN (ed) Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment. pp. 159-168. Springer International Publishing. https://doi.org/10.1007/978-3-319-18663-4_27 es_ES
dc.description.references Kysely, J., Picek, J. 2007. Regional growth curve and improved design values of extreme precipitation events in the Czech Republic. Climate Research, 33(3), 243- 255. https://doi.org/10.3354/cr033243 es_ES
dc.description.references Kysely, J., Picek, J., Huth, R. 2007. Formation of homogeneous regions for regional frequency analysis of extreme precipitation events in the Czech Republic, Studia Geophysica et Geodeatica, 51(2), 327-344. https://doi.org/10.1007/s11200-007-0018-3 es_ES
dc.description.references Lee, S.H., Maeng, S.J. 2003. Frequency analysis of extreme rainfall using Lmoments. Irrigation and Drainage, 52(3), 219-230. https://doi.org/10.1002/ird.90 es_ES
dc.description.references Lin G.-F., Chen Lu-H. 2006. Identification of homogeneous regions for regional frequency analysis using the self-organizing maps. Journal of Hydrology, 324(1-4), 1-9. https://doi.org/10.1016/j.jhydrol.2005.09.009 es_ES
dc.description.references Li, J., Heap, A. 2011. Review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecological Informatics, 6(3-4), 228-241. https://doi.org/10.1016/j.ecoinf.2010.12.003 es_ES
dc.description.references Liu, G., Yang, X. 2008. Spatial variability analysis of soil properties within a field. International Conference on Computer and Computing Technologies in Agriculture. Wuyishan, China (08-18-2007). 1341-1344 pp. Springer. US. https://doi.org/10.1007/978-0-387-77253-0_75 es_ES
dc.description.references Liu, J., Doan, C.D., Liong, S.-Y., Sanders, R., Dao, A.T., Fewtrell, T. 2015. Regional frequency analysis of extreme rainfall events in Jakarta. Natural Hazards, 75(2), 1075-1104. https://doi.org/10.1007/s11069-014-1363-5 es_ES
dc.description.references Liu, W., Du, P., Zhao, Z., Zhang, L. 2016. An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content. Scientific Reports, 6, 1-12. https://doi.org/10.1038/srep23889 es_ES
dc.description.references Malekinezhad, H., Zare-Garizi, A. 2014. Regional frequency analysis of daily rainfall extremes using L-moments approach. Atmósfera, 27(4), 411-427. https://doi.org/10.1016/S0187-6236(14)70039-6 es_ES
dc.description.references Montes, J., Álvarez, M., Pertierra, L., Moralo, J., Baztán, J. 2018. Regional Frequency Analysis of extremes flows in Northern of Spain. Ingeniería del agua, 22(2), 93-107. https://doi.org/10.4995/Ia.2018.8782 es_ES
dc.description.references Ngongondo, C.S., Xu, C.-Yu, Tallaksen, L.M., Alemaw, B., Chirwa, T. 2011. Regional frequency analysis of rainfall extremes in Southern malwai using index rainfall and L-moments approaches. Stochastic Environmental Research and Risk Assesment, 25(7), 939-955. https://doi.org/10.1007/s00477-011-0480-x es_ES
dc.description.references Norbiato, D., Borga, M., Sangat,i M., Zanon, F. 2007. Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. Journal of Hydrology, 345(3), 149-166. https://doi.org/10.1016/j.jhydrol.2007.07.009 es_ES
dc.description.references Oliver, M.A., Webster, R. 1990. Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information Systems, 4(3), 313-332. https://doi.org/10.1080/02693799008941549 es_ES
dc.description.references Parida, B.P., Kachroo, R.K., Shrestha, D.B. 1998. Regional Flood Frequency Analysis of Mahi-Sabarmati Basin (subzone 3-a) using Index-Flood Procedure with L-moments. Water Resources Management, 12(1-2), 1-12. es_ES
dc.description.references Park, J.S., Jung, H.S., Kim, R.S., Oh, J.H. 2001. Modelling summer extreme rainfall over the Korean peninsula using Wakeby distribution. International. Journal of Climatology, 21(11), 1371-1384. https://doi.org/10.1002/joc.701 es_ES
dc.description.references Pearson, C., McKerchar, A., Woods, R. 1991. Regional flood frequency analysis of western Australian data using L-moments. National Conference Publication-Institute of Engineers. Australia. 631-632. es_ES
dc.description.references Schaefer, M.G. 1990. Regional analyses of mean annual precipitation in Washington State. Water Resources Research, 26(1), 119-131. https://doi.org/10.1029/89WR01513 es_ES
dc.description.references Shahzadi, A., Akhter, A.S., Saf, B. 2013. Regional Frequency Analysis of Annual Maximum Rainfall in Monsoon Region of Pakistan using L-moments. Pakistan Journal of Statistics and Operation Research, 9(1), 111-136. https://doi.org/10.18187/pjsor.v9i1.461 es_ES
dc.description.references Smithers, J.C., Schulze, R.E. 2001. A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments. Journal of Hydrology, 24(1-2), 42-52. https://doi.org/10.1016/S0022-1694(00)00374-7 es_ES
dc.description.references Sveinsson, O.G.B., Salas, J.D., Boes, D.C. 2002. Regional frequency analysis of extreme precipitation in northeastern Colorado and Fort Collins flood of 1997. Journal of Hydrologic Engineering, 7(1), 49-63. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:1(49) es_ES
dc.description.references Trefry, C.M., Watkins, Jr., Johnson, D. 2005. Regional rainfall frequency analysis for the State of Michigan. Journal of Hydrological Engineering, 10(6), 437-449. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:6(437) es_ES
dc.description.references Vogel, R.M., Thomas, Jr. W.O., McMahon, T.A. 1993. Flood-flow frequency model selection in southwestern United States. Journal of Water Resources Planning and Management, 119(3), 353-366. https://doi.org/10.1061/(ASCE)0733-9496(1993)119:3(353) es_ES
dc.description.references Weaver, J.C. 2006. Frequency of annual maximum precipitation in the city of Charlotte and Mecklenburg country, North Carolina, through 2004. Scientific Investigation Report 2006-5017. U.S. Department of Interior, U.S. es_ES
dc.description.references Weber, D., Englund, E. 1992. Evaluation and comparison of spatial interpolators. Mathematical Geology, 24, 381-391. https://doi.org/10.1007/BF00891270 es_ES
dc.description.references Yang, T., Shao, Q., Hao, Z., Chen, X., Zhang, Z., Xu, C., Sun, L. 2010. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the pearl river basin, China. Journal of Hydrology, 380(3), 386-405. https://doi.org/10.1016/j.jhydrol.2009.11.013 es_ES
dc.description.references Yao, X., Fu, B., Lu, Y., Sun, F., Wang S., Liu, M. 2013. Comparison of Four Spatial Interpolation Methods for Estimating Soil Moisture in a Complex Terrain Catchment. Plos One, 8(1), 1-13. https://doi.org/10.1371/journal.pone.0054660 es_ES
dc.description.references Yasrebi, J., Saffari, M., Fathi, H., Karimian, N., Moazallahi, M., Gazni, R. 2009. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Research Journal of Biological Sciences, 4(1), 93-102. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem