- -

SfM photogrammetry applied to taxonomic determination of archaeofauna remains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SfM photogrammetry applied to taxonomic determination of archaeofauna remains

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lorenzo, Gabriela es_ES
dc.contributor.author Lopez, Luciano es_ES
dc.contributor.author Moralejo, Reinaldo A. es_ES
dc.contributor.author del Papa, Luis M. es_ES
dc.date.accessioned 2019-02-06T08:36:51Z
dc.date.available 2019-02-06T08:36:51Z
dc.date.issued 2019-01-28
dc.identifier.uri http://hdl.handle.net/10251/116463
dc.description.abstract [EN] Photogrammetry has recently been incorporated into archaeological research, replacing much more expensive techniques while still generating high resolution results. This technique converts two dimensional (2D) images into three-dimensional (3D) models, allowing for the complex analysis of geometric and spatial information. It has become one of the most used methods for the 3D recording of cultural heritage objects. Among its possible archaeological uses are: digitally documenting an archaeological dig at low cost, aiding the decision-making process (Dellepiane et al., 2013); spatial surveying of archaeological sites; 3D model generation of archaeological objects and digitisation of archaeological collections (Adami et al., 2018; Aparicio Resco et al., 2014; Cots et al., 2018; Iturbe et al., 2018; Moyano, 2017).The objective of this paper is to show the applicability of 3D models based on SfM (Structure from Motion) photogrammetry for archaeofauna analyses. We created 3D models of four camelid (Lama glama) bone elements (skull, radius-ulna, metatarsus and proximal phalange), aiming to demonstrate the advantages of 3D models over 2D osteological guides, which are usually used to perform anatomical and systematic determination of specimens.Photographs were taken with a 16 Megapixel Nikon D5100 DSLR camera mounted on a tripod, with the distance to the object ranging between 1 and 3 m and using a 50mm fixed lens. Each bone element was placed on a 1 m tall stool, with a green, high contrast background. Photographs were shot at regular intervals of 10-15º, moving in a circle. Sets of around 30 pictures were taken from three circumferences at vertical angles of 0º, 45º and 60º. In addition, some detailed and overhead shots were taken from the dorsal and ventral sides of each bone element. Each set of dorsal and ventral photos was imported to Agisoft Photoscan Professional. A workflow (Fig. 4) of alignment, tie point matching, high resolution 3D dense point cloud construction, and creation of a triangular mesh covered with a photographic texture was performed. Finally the dorsal and ventral models were aligned and merged and the 3D model was accurately scaled. In order to determine accuracy of the models, linear measurements were performed and compared to a digital gauge measurement of the physical bones, obtaining a difference of less than 0.5 mm.Furthermore, five archaeological specimens were selected to compare our 3D models with the most commonly used 2D camelid atlas (Pacheco Torres et al., 1986; Sierpe, 2015). In the particular case of archaeofaunal analyses, where anatomical and systematic determination of the specimens is the key, digital photogrammetry has proven to be more effective than traditional 2D documentation methods. This is due to the fact that 2D osteological guides based on drawings or pictures lack the necessary viewing angles to perform an adequate and complete diagnosis of the specimens. Using new technology can deliver better results, producing more comprehensive information of the bone element, with great detail and geometrical precision and not limited to pictures or drawings at particular angles. In this paper we can see how 3D modelling with SfM-MVS (Structure from Motion-Multi View Stereo) allows the observation of an element from multiple angles. The possibility of zooming and rotating the models (Figs. 6g, 6h, 7d, 8c) improves the determination of the archaeological specimens.Information on how the 3D model was produced is essential. A metadata file must include data on each bone element (anatomical and taxonomic) plus information on photographic quantity and quality. This file must also contain the software used to produce the model and the parameters and resolution of each step of the workflow (number of 3D points, mesh vertices, texture resolution and quantification of the error of the model). In short, 3D models are excellent tools for osteological guides. es_ES
dc.description.abstract [ES] En los últimos años, la fotogrametría se ha ido incorporando en el trabajo arqueológico no sólo por sus ventajas técnicas, sino también para reemplazar métodos mucho más costosos. El objetivo del presente trabajo es demostrar la utilidad de los modelos 3D realizados a partir de la fotogrametría digital como material de referencia para análisis arqueofaunísticos. Particularmente, realizamos modelos 3D de cuatro elementos de un camélido (Lama glama) con el propósito de presentar las ventajas de los modelos 3D en contraposición a las guías osteológicas (2D) usualmente utilizadas para la determinación anatómica y sistemática de los especímenes. En este trabajo se generaron los modelos virtuales 3D a partir de la solución fotogramétrica y de visión por computador structure from motion multi-view stereo (SfM-MVS), la cual permite establecer la ubicación espacial (X,Y,Z) de puntos registrados en las imágenes. Un avance significativo en la técnica fue el uso de algoritmos que permiten un flujo de trabajo semiautomático para la producción del modelo 3D. Por otra parte, se seleccionaron a modo de ejemplo cinco especímenes arqueológicos fragmentarios de camélidos para comparar los modelos 3D realizados con los atlas 2D de camélidos usualmente utilizados. Los resultados 3D obtenidos han demostrado ser más eficientes que los métodos de documentación tradicional 2D. La incorporación de la nueva tecnología SfM-MVS puede aportar mejores resultados en la medida que produce información integral del elemento óseo con gran precisión geométrica y detalle, y no solo fotografías o dibujos desde diferentes ángulos. La posibilidad de contar con diversas vistas en el modelo 3D nos facilitó la determinación de los especímenes arqueológicos. Lo más destacado: Se presenta una evaluación de la utilidad de modelos fotogramétricos de elementos óseos como material de referencia para el análisis arqueofaunístico. La técnica fotogramétrica SfM permite obtener una adecuada reproducción de la geometría y morfología de los elementos óseos. Los modelos 3D presentan una amplia ventaja en contraposición a las guías osteológicas (2D) tradicionalmente utilizadas para la determinación anatómica y sistemática de los especímenes es_ES
dc.description.sponsorship Al Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y a la Universidad Nacional de La Plata por el financiamiento de las investigaciones. A los Sres. Orellanas y Silva del ex Zoológico Municipal de Santiago del Estero “San Francisco de Asís”, que permitieron recuperar los restos de un individuo de Lama glama. A la Lic. Amelia Barreiro por la traducción del resumen al inglés. Al Editor de la revista Virtual Archaeological Review y a los evaluadores por sus comentarios y sugerencias que han ayudado a mejorar el artículo. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Virtual Archaeology Review
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fotogrametría digital es_ES
dc.subject Arqueología virtual es_ES
dc.subject Modelado 3D es_ES
dc.subject Zooarqueología es_ES
dc.subject Camélidos es_ES
dc.subject Photogrammetry es_ES
dc.subject Virtual archaeology es_ES
dc.subject 3D modelling es_ES
dc.subject Zooarchaeology es_ES
dc.subject Camelids es_ES
dc.title SfM photogrammetry applied to taxonomic determination of archaeofauna remains es_ES
dc.title.alternative Fotogrametría SfM aplicada a la determinación taxonómica de restos arqueofaunísticos es_ES
dc.type Artículo es_ES
dc.date.updated 2019-02-05T13:51:52Z
dc.identifier.doi 10.4995/var.2019.11094
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Lorenzo, G.; Lopez, L.; Moralejo, RA.; Del Papa, LM. (2019). SfM photogrammetry applied to taxonomic determination of archaeofauna remains. Virtual Archaeology Review. 10(20):70-83. https://doi.org/10.4995/var.2019.11094 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/var.2019.11094 es_ES
dc.description.upvformatpinicio 70 es_ES
dc.description.upvformatpfin 83 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10
dc.description.issue 20
dc.identifier.eissn 1989-9947
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
dc.contributor.funder Universidad Nacional de La Plata, Argentina
dc.description.references Adami, A., Fassi, F., Fregonese, L., & Piana, M. (2018). Image-based techniques for the survey of mosaics in the St Mark's Basilica in Venice. Virtual Archaeology Review, 9(19), 1-20. https://doi.org/10.4995/var.2018.9087 es_ES
dc.description.references Aparicio Resco, P., Carmona Barrero, J. D., Fernández Díaz, M., & Martín Serrano, P. M. (2014). Fotogrametría involuntaria: rescatando información geométrica en 3D de fotografías de archivo. Virtual Archaeology Review, 5(10), 11-20. https://doi:org/10.4995/var.2014.4205 es_ES
dc.description.references Cardich, A., & Izeta, A. D. (1999-2000). Revisitando Huango (Perú). Análisis cuantitativos aplicados a restos de Camelidae del Pleistoceno tardío. Anales de Arqueología y Etnología, 54-55, 29-46. es_ES
dc.description.references Cartajena, I., Nuñez, L., & Grosjean, M. (2007). Camelid domestication on the western slope of the Puna de Atacama, northern Chile. Anthropozoologica, 42(2), 155-173. es_ES
dc.description.references Conte, B., & Izeta, A. D. (2018). Métodos 3D aplicados en la arqueología. In: Congreso Nacional de Arqueometría, (pp. 422-426). San Miguel de Tucumán y Amaicha del Valle, Argentina. es_ES
dc.description.references Cots, I., Vilà, J., Diloli, J., Ferré, R., & Bricio, L. (2018). Virtual archaeology: from archaeological excavation to the management and diffusion of heritage. Les Cases de la Catedral (Tortosa) and the protohistorical settlement of La Cella (Salou), Tarragona. Virtual Archaeology Review, 9(19), 102-113. https://doi.org/10.4995/var.2018.9754 es_ES
dc.description.references de Lamo, D. A. (2011). Camélidos sudamericanos. Historia, usos y sanidad animal. Buenos Aires: Servicio Nacional de Sanidad y Calidad Agroalimentaria, Senasa. es_ES
dc.description.references del Papa, L. M. (2012). Una aproximación al estudio de los sistemas de subsistencia a través del análisis arqueofaunístico en un sector de la cuenca del Río Dulce y cercanías a la Sierra de Guasayán [An approach to the study of subsistence systems through archaeofaunal analysis in a sector of the Dulce river basin and Guasayán mountain range] (Doctoral thesis Universidad Nacional de La Plata, Argentina). Retrieved from http://sedici.unlp.edu.ar/handle/10915/24533 es_ES
dc.description.references del Papa, L. M. (2015). First approach to study the presence of domesticated camelids (Lama glama) in the Chaco-Santiago region, a marginal zone of the South Central Andes. International Journal of Osteoarchaeology, 25, 45-60. https://doi.org/10.1002/oa.2262 es_ES
dc.description.references del Papa, L. M., Togo, J., & De Santis, L. J. M. (2013). Primera aproximación a la tafonomía de la región Chaco-Santiagueña. Sitio Maquijata, Santiago del Estero. En A. D. Izeta, & G. L. Mengoni Goñalons (Eds.), De la Puna a las Sierras: Avances y Perspectivas en Zooarqueología Andina (pp. 17-38). Oxford: BAR International Series 2564, South American Archaeology Series. es_ES
dc.description.references Dellepiane, M., Dell'Unto, N., Callieri, M., Lindgren, S., & Scopigno, R. (2013). Archeological excavation monitoring using dense stereo matching techniques. Journal of Cultural Heritage, 14(3), 201-210. https://doi.org/10.1016/j.culher.2012.01.011 es_ES
dc.description.references Elkin, D. (1995). Volume Density of South American Camelid Skeletal Parts. International Journal of Osteoarcbaeology, 5, 29-37. https://doi.org/10.1002/oa.1390050104 es_ES
dc.description.references Elkin, D. C. (1996). Arqueozoología de Quebrada Seca 3: Indicadores de Subsistencia Humana Temprana en la Puna Meridional Argentina. [Archaeozoology of Quebrada Seca 3: Indicators of Early Human Subsistence in the Southern Puna of Argentina] (Doctoral thesis, Facultad de Filosofía y Letras, Universidad Nacional de Buenos Aires, Argentina). es_ES
dc.description.references Evin, A., Souter, T., Hulme-Beaman, A., Ameen, C., Allen, R., Viacava, P., … Dobney, K. (2016). The use of close-range photogrammetry in zooarchaeology: Creating accurate 3D models of wolf crania to study dog domestication. Journal of Archaeological Science: Reports, 9, 87-93. https://doi.org/10.1016/j.jasrep.2016.06.028 es_ES
dc.description.references Franklin, W. L. (1982). Biology, ecology and relationship to man of the South American Camelids. En M. A. Mares, & H. H. Genoways (Eds.). Mammalian Biology in South America (pp. 457-489). Pittsburg: Ser. Pymatuning Lab. of Ecol., University of Pittsburg Press. es_ES
dc.description.references Furukawa, Y., & Ponce, J. (2010). Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8), 1362-1376. https://doi.org/10.1109/TPAMI.2009.161 es_ES
dc.description.references Grant J. (2010). Aportes de distintas técnicas osteométricas para la identificación interespecífica de camélidos sudamericanos. En M. A. Gutiérrez, M. De Nigris, P. M. Fernández, M. Giardina, A. Gil, A. Izeta, G. Neme, & H. Yacobaccio (Eds.), Zooarqueología a Principios del siglo XXI: Aportes, metodologías y casos de estudio (pp. 17-28). Buenos Aires: Ediciones del Espinillo. es_ES
dc.description.references Green, S., Bevan, A., & Shapland, M. (2014). A comparative assessment of structure from motion methods for archaeological research. Journal of Archaeological Science, 46(1), 173-181. https://doi.org/10.1016/j.jas.2014.02.030 es_ES
dc.description.references Grosman, L., Smikt, O., & Smilansky, U. (2008). On the application of3-D scanning technology for the documentation and typology of lithic artifacts. Journal of Archaeological Science, 35, 3101-3110 http://dx.doi.org/10.1016/j.jas.2008.06.011 es_ES
dc.description.references Iturbe, A., Cachero, R., Cañal, D., & Martos, A. (2018). Virtual digitization of caves with parietal Paleolithic art from Bizkaia. Scientific analysis and dissemination through new visualization techniques. Virtual Archaeology Review, 9(18), 57-65. https://doi.org/10.4995/var.2018.7579 es_ES
dc.description.references Kaufmann, C. A. (2009). Estructura de edad y sexo en guanaco. Estudios actualísticos y arqueológicos en Pampa y Patagonia. Buenos Aires: Sociedad Argentina de Antropología. es_ES
dc.description.references Kent, J. D. (1982). The Domestication and exploitation of South American camelids: methods of analysis and their application to circum-lacustrine archaeological sites in Bolivia and Peru (Tesis doctoral, University: St. Louis, Washington). es_ES
dc.description.references Lachat, E., Macher, H., Landes, T., & Grussenmeyer, P. (2015). Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling. Remote Sensing, 7, 13070-13097. https://doi.org/10.3390/rs71013070 es_ES
dc.description.references Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision (Vol. 2, pp. 1150-1157). Kerkyra, Greece https://doi.org/10.1109/ICCV.1999.790410 es_ES
dc.description.references Martínez Huerta, J. C. (2015). Fotogrametría digital: Un complemento en el registro arqueológico dentro del Proyecto Arqueológico La Quemada (2013-2014). Instituto Nacional de Antropología e Historia, Zacatecas. Retrieved from: http://www.pcnt.inah.gob.mx/pdf/14289636792.pdf es_ES
dc.description.references Martínez, G., & Gutiérrez, M. A. (2004). Tendencias en la explotación humana de la fauna durante el Pleistoceno final y Holoceno en la Región Pampeana (Argentina). En G. Mengoni Goñalons (Ed.), Zooarchaeology of South America, (pp. 81-98). Oxford: BAR Internacional Series. es_ES
dc.description.references Maté González, M. A., Yravedra, J., González-Aguilera, D., Palomeque-González, J., & Domínguez-Rodrigo, M. (2015). Micro-photogrammetric characterization of cut marks on bones. Journal of Archaeological Science, 62, 128-142. https://doi.org/10.1016/j.jas.2015.08.006 es_ES
dc.description.references Medina, M. E., Pastor, S., & Rivero, D. E. (2014). Osteometría y diferenciación de especies de camélidos en sitios arqueológicos de las Sierras Centrales (Argentina). Tendencias, problemas y perspectivas. Intersecciones en Antropología, 15, 339-351. es_ES
dc.description.references Menegaz, A., Salemme, M., & Ortiz Jaureguizar, E. (1988). Una propuesta de sistematización de los caracteres morfométricos de los metapodios y las falanges de Camelidae. En N. Ratto, & A. Haber (Eds.). De procesos, contextos y otros huesos (pp. 53-64). Buenos Aires: Facultad de Filosofía y Letras, Universidad de Buenos Aires. es_ES
dc.description.references Mengoni Goñalons, G. L. (1995). Importancia socio-económica del guanaco en el período precolombino. In S. Puig (Ed.). Técnicas para el manejo del guanaco (pp. 13-25). Mendoza: UICN. es_ES
dc.description.references Mengoni Goñalons, G. L., & Yacobaccio, H. D. (2006). The Domestication of South American Camelids. A View from the South-Central Andes. En M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.). Documenting Domestication: New Genetic and Archaeological Paradigms (pp. 228-244). Berkeley: University of California Press. es_ES
dc.description.references Mignino, J., Izeta, A., Conte, B., & Herrera, B. (2018). 3D photogrammetric models based on Hystricognath rodents. Upper Ongamira valley, northern Córdoba province, central Argentina. In: 13th International Conference of Archaeozoology, 3-7 de septiembre de 2018, Ankara, Turquía. es_ES
dc.description.references Miotti, L. (1998). Zooarqueología de la Meseta Central y Costa de Santa Cruz. Un enfoque de las estrategias adaptativas aborígenes y los paleoambientes. Revista del Museo de Historia Natural de San Rafael, Tomo X (1-4). es_ES
dc.description.references Moralejo, R. A., Gobbo, D., Del Cogliano, D., & Pinto, L. (2018). Aplicación de tecnología LIDAR en El Shincal de Quimivil, Londres, Catamarca. Arqueología, 24(3), 165-184. Retrieved from: http://revistascientificas.filo.uba.ar/index.php/Arqueologia/article/view/5386 es_ES
dc.description.references Moyano, G. (2017). El uso de fotogrametría digital como registro complementario en arqueología. Alcances de la técnica y casos de aplicación. Comechingonia, 21(2), 333-350. es_ES
dc.description.references Niven, L., Steele, T. E., Finke, H., Gernat, T., & Hublin, J.-J. (2009). Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection. Journal of Archaeological Science, 36(9), 2018-2023. https://doi:org/10.1016/J.JAS.2009.05.021 es_ES
dc.description.references Olivera, D. E. (1998). Cazadores y Pastores Tempranos de la Puna Argentina. En S. Ahlgren, A. Muñoz, S. Sjodin, & P. Stenborg (Eds.). Past and Present in Andean Prehistory and Early History (pp. 153-180). Goteborg: Etnologiska Studier 42. Etnografiska Museet. es_ES
dc.description.references Pacheco Torres, V. R., Altamirano Enciso, A., & Guerra Porras, E. (1986). The Osteology of South American camelids. Los Angeles: Archaeological Research Tools 3. Institute of Archaeology, University of California. es_ES
dc.description.references Porter, S. T., Roussel, M., & Soressi, M. (2016). A simple photogrammetry rig for the reliable creation of 3D artifact models in the field Lithic examples from the Early Upper Paleolithic Sequence of Les Cottés (France). Advances in Archaeological Practice, 4(1), 71-86. https://doi.org/10.7183/2326-3768.4.1.71 es_ES
dc.description.references Salemme, M. C., Miotti, L. L., & Tonni E. P. (1988). La determinación sistemática de los mamíferos en el análisis arqueofaunístico. En N. Ratto, & A. Haber (Eds.). De procesos, contextos y otros huesos (pp. 65-75). Buenos Aires: Facultad de Filosofía y Letras, Universidad de Buenos Aires. es_ES
dc.description.references Seitz, S. M., Curless, S. M., Diebel, B., Scharstein, J., & Szeliski, R. (2006). A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Volume 1, pp. 519-528). New York, EEUU. https://doi:10.1109/CVPR.2006.19 es_ES
dc.description.references Sholts, S. B., Flores, L., Walker, P. L., & Wärmländer, S. K. T. S. (2011). Comparison of coordinate measurement precision of different landmark types on human crania using a 3D laser scanner and a 3D digitiser: Implications for applications of digital morphometrics. International Journal of Osteoarchaeology, 21(5), 535-543. https://doi.org/10.1002/oa.1156 es_ES
dc.description.references Sierpe, V. G. (2015). Atlas osteológico de guanaco (Lama guanicoe). Chile: Ediciones Universidad de Magallanes. es_ES
dc.description.references Stančić I., Musić J., & Zanchi, V. (2013). Improved structured light 3D scanner with application to anthropometric parameter estimation. Measurement, 46(1), 716-726. https://dx.doi.org/10.1016/j.measurement.2012.09.010 es_ES
dc.description.references Verhoeven, G., Doneus, M., Briese, C., & Vermeulen, F. (2012). Mapping by matching: A computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. Journal of Archaeological Science, 39(7), 2060-2070. https://doi.org/10.1016/j.jas.2012.02.022 es_ES
dc.description.references Westoby, M. J., Brasington, J., Glasser, M. J., Hambrey, M. J., & Reynolds, J. M. (2012). Structure- from-motion photogrammetry: a low cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021 es_ES
dc.description.references Wheeler, J. (1984). On the origin and early development of pastoralism in the Andes. In J. Clutton-Brock, & C. Grigson (Eds.). Animals and archaeology 3: Early herders and their pocks (pp. 395-410). Oxford: BAR International Series. es_ES
dc.description.references Wheeler, J. (1995). Evolution and present situation of the South American Camelidae. Biological Journal of the Linnean Society, 54, 271-295. es_ES
dc.description.references Wheeler Pires-Ferreira, J., Pires-Ferreira, E., & Kaulicke, P. (1976). Preceramic animal utilization in the Central Peruvian Andes. Science, 194, 483-490. https://doi.org/10.1126/science.194.4264.483 es_ES
dc.description.references Wing, E. (1972). Utilization of animal resources in the Peruvian Andes. In S. Izumi, & K. Terada (Eds.). Andes 4: Excavations at Kotosh, Perú (pp. 327-352). Tokyo: University of Tokyo Press. es_ES
dc.description.references Wu, C. (2013). Towards linear-time incremental structure from motion. Proceedings - 2013 International Conference on 3D Vision, 3DV 2013, 127-134. https://doi.org/10.1109/3DV.2013.25 es_ES
dc.description.references Yacobaccio, H. D. (2010). Osteometría de llamas (Lama glama L.) y sus consecuencias arqueológicas. In M. A. Gutiérrez, M. De Nigris, P. M. Fernández, M. Giardina, A. Gil, A. Izeta, G. Neme, & H. Yacobaccio (Eds.). Zooarqueología a principios del siglo XXI: Aportes teóricos, metodológicos y casos de estudio (pp. 65-75). Buenos Aires: Ediciones del Espinillo. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem