Mostrar el registro sencillo del ítem
dc.contributor.author | López Alfonso, Salvador | es_ES |
dc.date.accessioned | 2019-02-06T21:03:48Z | |
dc.date.available | 2019-02-06T21:03:48Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/116483 | |
dc.description.abstract | [EN] A subset B of a set-algebra A has property N if each B-pointwise bounded subset M of bounded measures of bounded variation is A -uniformly bounded. Each σ-algebra has property N and there exists algebras which does not have property N, for instance, the algebra of finite and co-finite subsets of N. Schachermayer proved that the algebra J(I ) of Jordan measurable subsets of I := [0, 1] has property N and J(I ) is not a σ-algebra. In 2013, Valdivia proved that if (B_m_1 )_m_1 is an increasing countable covering of the algebra J(K) of Jordan measurable subsets of a product K of k icompact intervals [a_i , b_i], 1<=i<=k, there exists B_n_1 which has property N. In this paper we prove that if, additionally, for each m_1 ∈ N, (m_1,m_2) ∈ N^2, the sequences (B_m_1,p_2 )_p_2, (B_m_1,m_2,p_3)_p_3, are increasing coverings of B_m_1 , B_m_1,m_2, , respectively, there exists a sequence (n_r)_r such that each B_n_1,n_2;...;n_r has property N. This result extends the mentioned Schachermayer and Valdivia results and enables us to give some applications to bounded vector measures. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bounded set | es_ES |
dc.subject | Finitely additive scalar measure | es_ES |
dc.subject | Nikodym and web Nikodym property | es_ES |
dc.subject | NV-tree | es_ES |
dc.subject | Set-algebra | es_ES |
dc.subject | Vector measure | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.title | On Schachermayer and Valdivia results in algebras of Jordan measurable sets | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-015-0267-x | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.description.bibliographicCitation | López Alfonso, S. (2016). On Schachermayer and Valdivia results in algebras of Jordan measurable sets. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 110(2):799-808. doi:10.1007/s13398-015-0267-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s13398-015-0267-x | es_ES |
dc.description.upvformatpinicio | 799 | es_ES |
dc.description.upvformatpfin | 808 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 110 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\298986 | es_ES |
dc.description.references | Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984) | es_ES |
dc.description.references | Diestel, J., Uhl, J.J.: Vector Measures. Mathematical Surveys, vol. 15. American Mathematical Society, Providence (1977) | es_ES |
dc.description.references | Dieudonné, J.: Sur la convergence de suites de measures de Radon. An. Acad. Brasi. Ciên. 23, 277–282 (1951) | es_ES |
dc.description.references | Kakol, J., López-Pellicer, M.: On Valdivia strong version of Nikodym boundedness property. Preprint | es_ES |
dc.description.references | Köthe, G.: Topological Vector Spaces I and II. Springer, Berlin (1979) | es_ES |
dc.description.references | López-Alfonso, S., Mas, J., Moll, S.: Nikodym boundedness property and webs in $$\sigma $$ σ -algebras. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. (2015). doi: 10.1007/s13398-015-0260-4 | es_ES |
dc.description.references | López-Pellicer, M.: Webs and bounded finitely additive measures. J. Math. Anal. Appl. 210, 257–267 (1997) | es_ES |
dc.description.references | Nikodym, O.M.: Sur les familles bornées de fonctions parfaitement additives d’ensembles abstrait. Monatsh. Math. U. Phys. 40, 418–426 (1933) | es_ES |
dc.description.references | Schachermayer, W.: On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. Dissertationes Math. (Rozprawy Mat.) 214, (1982) | es_ES |
dc.description.references | Valdivia, M.: On the closed graph theorem. Collect. Math. 22, 51–72 (1971) | es_ES |
dc.description.references | Valdivia, M.: On certain barrelled normed spaces. Ann. Inst. Fourier 29, 39–56 (1979) | es_ES |
dc.description.references | Valdivia, M.: On Nikodym boundedness property. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 107, 355–372 (2013) | es_ES |