- -

An Intelligent System for Video Surveillance in IoT Environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Intelligent System for Video Surveillance in IoT Environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author REGO MAÑEZ, ALBERT es_ES
dc.contributor.author Canovas Solbes, Alejandro es_ES
dc.contributor.author Jimenez, Jose M. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2019-02-09T21:03:40Z
dc.date.available 2019-02-09T21:03:40Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/116594
dc.description © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
dc.description.abstract [EN] Multimedia traffic has drastically grown in the last few years. In addition, some of the last paradigms proposed, like the Internet of Things (IoT), adds new types of traffic and applications. Software-defined networks (SDNs) improve the capability of network management. Combined with SDN, artificial intelligence (AI) can provide solutions to network problems based on classification and estimation techniques. In this paper, we propose an artificial intelligence system for detecting and correcting errors in multimedia transmission in a surveillance IoT environment connected through a SDN. The architecture, algorithm, and messages of the SDN are detailed. The AI system design is described, and the test-bed and the data set are explained. The AI module consists of two different parts. The first one is a classifying part, which detects the type of traffic that is sent through the network. The second part is an estimator that informs the SDN controller on which kind of action should be executed to guarantee the quality of service and quality of experience. Results show that with the actions performed by the network, like jitter can be reduced up to 70% of average and losses can be reduced from 9.07% to nearly 1.16%. Moreover, the presented AI module is able to detect critical traffic with 77% accuracy es_ES
dc.description.sponsorship This work was supported in part by the Ministerio de Educacion, Cultura y Deporte, through the Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2015) under Grant FPU15/06837, in part by the Programa para la Formacion de Personal Investigador de la Universitat Politecnica de Valencia 2014, Subprograma 2, (Codigo del contrato: 884), and in part by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento within the project under Grant TIN2014-57991-C3-1-P and Grant TIN2017-84802-C2-1-P.
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial inteligence es_ES
dc.subject IoT es_ES
dc.subject Multimedia es_ES
dc.subject SDN es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title An Intelligent System for Video Surveillance in IoT Environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2018.2842034 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F06837/ES/FPU15%2F06837/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-57991-C3-1-P/ES/DISTRIBUCION INTELIGENTE DE SERVICIOS MULTIMEDIA UTILIZANDO REDES COGNITIVAS ADAPTATIVAS DEFINIDAS POR SOFTWARE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI%2F2014-884/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Rego Mañez, A.; Canovas Solbes, A.; Jimenez, JM.; Lloret, J. (2018). An Intelligent System for Video Surveillance in IoT Environments. IEEE Access. 6:31580-31598. https://doi.org/10.1109/ACCESS.2018.2842034 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1109/ACCESS.2018.2842034 es_ES
dc.description.upvformatpinicio 31580 es_ES
dc.description.upvformatpfin 31598 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\376380 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem