Mostrar el registro sencillo del ítem
dc.contributor.author | REGO MAÑEZ, ALBERT | es_ES |
dc.contributor.author | Canovas Solbes, Alejandro | es_ES |
dc.contributor.author | Jimenez, Jose M. | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2019-02-09T21:03:40Z | |
dc.date.available | 2019-02-09T21:03:40Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/116594 | |
dc.description | © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. | |
dc.description.abstract | [EN] Multimedia traffic has drastically grown in the last few years. In addition, some of the last paradigms proposed, like the Internet of Things (IoT), adds new types of traffic and applications. Software-defined networks (SDNs) improve the capability of network management. Combined with SDN, artificial intelligence (AI) can provide solutions to network problems based on classification and estimation techniques. In this paper, we propose an artificial intelligence system for detecting and correcting errors in multimedia transmission in a surveillance IoT environment connected through a SDN. The architecture, algorithm, and messages of the SDN are detailed. The AI system design is described, and the test-bed and the data set are explained. The AI module consists of two different parts. The first one is a classifying part, which detects the type of traffic that is sent through the network. The second part is an estimator that informs the SDN controller on which kind of action should be executed to guarantee the quality of service and quality of experience. Results show that with the actions performed by the network, like jitter can be reduced up to 70% of average and losses can be reduced from 9.07% to nearly 1.16%. Moreover, the presented AI module is able to detect critical traffic with 77% accuracy | es_ES |
dc.description.sponsorship | This work was supported in part by the Ministerio de Educacion, Cultura y Deporte, through the Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2015) under Grant FPU15/06837, in part by the Programa para la Formacion de Personal Investigador de la Universitat Politecnica de Valencia 2014, Subprograma 2, (Codigo del contrato: 884), and in part by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento within the project under Grant TIN2014-57991-C3-1-P and Grant TIN2017-84802-C2-1-P. | |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Artificial inteligence | es_ES |
dc.subject | IoT | es_ES |
dc.subject | Multimedia | es_ES |
dc.subject | SDN | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | An Intelligent System for Video Surveillance in IoT Environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2018.2842034 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F06837/ES/FPU15%2F06837/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-57991-C3-1-P/ES/DISTRIBUCION INTELIGENTE DE SERVICIOS MULTIMEDIA UTILIZANDO REDES COGNITIVAS ADAPTATIVAS DEFINIDAS POR SOFTWARE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI%2F2014-884/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Rego Mañez, A.; Canovas Solbes, A.; Jimenez, JM.; Lloret, J. (2018). An Intelligent System for Video Surveillance in IoT Environments. IEEE Access. 6:31580-31598. https://doi.org/10.1109/ACCESS.2018.2842034 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1109/ACCESS.2018.2842034 | es_ES |
dc.description.upvformatpinicio | 31580 | es_ES |
dc.description.upvformatpfin | 31598 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\376380 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |