- -

The Use of Sensors for Monitoring the Feeding Process and Adjusting the Feed Supply Velocity in Fish Farms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Use of Sensors for Monitoring the Feeding Process and Adjusting the Feed Supply Velocity in Fish Farms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra-Boronat, Lorena es_ES
dc.contributor.author García-García, Laura es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2019-02-13T21:03:23Z
dc.date.available 2019-02-13T21:03:23Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1687-725X es_ES
dc.identifier.uri http://hdl.handle.net/10251/116717
dc.description.abstract [EN] Aquaculture is a growing industry, and its sustainability is crucial. One of its major environmental impacts is the uneaten feed that pollutes the water. To minimize the uneaten feed, many systems have been developed. Nevertheless, current systems can be improved by considering the fish position in the tank and the falling feed. In this paper, we propose a system based on fish presence sensors set at different tank heights and a feed detection sensor located in the drainage tubes. The fish presence sensor is based on light-dependent resistor (LDR). The calibration of these sensors is shown. When the output voltage is higher than 1.467 V, we can consider that fish are present. On the other side, the falling feed sensor is based on a CMOS sensor. The calibration process is performed with 40 pictures. The summation of pixels, with brightness value between 0 and 15 in the blue histogram, is used as an indicator of feed presence. If this value is higher than 520 pixels, we can consider that there is feed in the picture. Moreover, a verification process of both sensors is done. The results of the verification confirm the calibration. Finally, the operation of the system is shown. es_ES
dc.description.sponsorship The authors acknowledged "Ministerio de Educacion, Cultura y Deporte," through the "Ayudas para contratos predoctorales de Formacion del Profesorado Universitario (FPU) (Convocatoria 2014)" (Grant number FPU14/02953). es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Journal of Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title The Use of Sensors for Monitoring the Feeding Process and Adjusting the Feed Supply Velocity in Fish Farms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2018/1060987 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU2014-02953/ES/FPU2014-02953/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Parra-Boronat, L.; García-García, L.; Sendra, S.; Lloret, J. (2018). The Use of Sensors for Monitoring the Feeding Process and Adjusting the Feed Supply Velocity in Fish Farms. Journal of Sensors. 2018. doi:10.1155/2018/1060987 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1155/2018/1060987 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2018 es_ES
dc.relation.pasarela S\376381 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.description.references Jones, A. C., Mead, A., Kaiser, M. J., Austen, M. C. V., Adrian, A. W., Auchterlonie, N. A., … Brown, J. H. (2014). Prioritization of knowledge needs for sustainable aquaculture: a national and global perspective. Fish and Fisheries, 16(4), 668-683. doi:10.1111/faf.12086 es_ES
dc.description.references Parra, L., Sendra, S., García, L., & Lloret, J. (2018). Design and Deployment of Low-Cost Sensors for Monitoring the Water Quality and Fish Behavior in Aquaculture Tanks during the Feeding Process. Sensors, 18(3), 750. doi:10.3390/s18030750 es_ES
dc.description.references Tal, Y., Schreier, H. J., Sowers, K. R., Stubblefield, J. D., Place, A. R., & Zohar, Y. (2009). Environmentally sustainable land-based marine aquaculture. Aquaculture, 286(1-2), 28-35. doi:10.1016/j.aquaculture.2008.08.043 es_ES
dc.description.references Qi, L., Zhang, J., Xu, M., Fu, Z., Chen, W., & Zhang, X. (2011). Developing WSN-based traceability system for recirculation aquaculture. Mathematical and Computer Modelling, 53(11-12), 2162-2172. doi:10.1016/j.mcm.2010.08.023 es_ES
dc.description.references Primavera, J. H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean & Coastal Management, 49(9-10), 531-545. doi:10.1016/j.ocecoaman.2006.06.018 es_ES
dc.description.references Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831-849. doi:10.1016/j.envint.2006.05.002 es_ES
dc.description.references Papadakis, V. M., Papadakis, I. E., Lamprianidou, F., Glaropoulos, A., & Kentouri, M. (2012). A computer-vision system and methodology for the analysis of fish behavior. Aquacultural Engineering, 46, 53-59. doi:10.1016/j.aquaeng.2011.11.002 es_ES
dc.description.references Saberioon, M., Gholizadeh, A., Cisar, P., Pautsina, A., & Urban, J. (2016). Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Reviews in Aquaculture, 9(4), 369-387. doi:10.1111/raq.12143 es_ES
dc.description.references Armstrong, J. D., Braithwaite, V. A., & Rycroft, P. (1996). A flat-bed passive integrated transponder antenna array for monitoring behaviour of Atlantic salmon parr and other fish. Journal of Fish Biology, 48(3), 539-541. doi:10.1111/j.1095-8649.1996.tb01446.x es_ES
dc.description.references Conti, S. G., Roux, P., Fauvel, C., Maurer, B. D., & Demer, D. A. (2006). Acoustical monitoring of fish density, behavior, and growth rate in a tank. Aquaculture, 251(2-4), 314-323. doi:10.1016/j.aquaculture.2005.06.018 es_ES
dc.description.references Zhang, H., Wei, Q., & Kang, M. (2014). Measurement of swimming pattern and body length of cultured Chinese sturgeon by use of imaging sonar. Aquaculture, 434, 184-187. doi:10.1016/j.aquaculture.2014.08.024 es_ES
dc.description.references Atoum, Y., Srivastava, S., & Xiaoming Liu. (2015). Automatic Feeding Control for Dense Aquaculture Fish Tanks. IEEE Signal Processing Letters, 22(8), 1089-1093. doi:10.1109/lsp.2014.2385794 es_ES
dc.description.references Bórquez-Lopez, R. A., Casillas-Hernandez, R., Lopez-Elias, J. A., Barraza-Guardado, R. H., & Martinez-Cordova, L. R. (2018). Improving feeding strategies for shrimp farming using fuzzy logic, based on water quality parameters. Aquacultural Engineering, 81, 38-45. doi:10.1016/j.aquaeng.2018.01.002 es_ES
dc.description.references Papandroulakis, N., Dimitris, P., & Pascal, D. (2002). An automated feeding system for intensive hatcheries. Aquacultural Engineering, 26(1), 13-26. doi:10.1016/s0144-8609(01)00091-7 es_ES
dc.description.references Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654 es_ES
dc.description.references Covès, D., Beauchaud, M., Attia, J., Dutto, G., Bouchut, C., & Bégout, M. L. (2006). Long-term monitoring of individual fish triggering activity on a self-feeding system: An example using European sea bass (Dicentrarchus labrax). Aquaculture, 253(1-4), 385-392. doi:10.1016/j.aquaculture.2005.08.015 es_ES
dc.description.references Zhou, C., Lin, K., Xu, D., Chen, L., Guo, Q., Sun, C., & Yang, X. (2018). Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture. Computers and Electronics in Agriculture, 146, 114-124. doi:10.1016/j.compag.2018.02.006 es_ES
dc.description.references Zhou, C., Zhang, B., Lin, K., Xu, D., Chen, C., Yang, X., & Sun, C. (2017). Near-infrared imaging to quantify the feeding behavior of fish in aquaculture. Computers and Electronics in Agriculture, 135, 233-241. doi:10.1016/j.compag.2017.02.013 es_ES
dc.description.references Parra, L., Rocher, J., Escrivá, J., & Lloret, J. (2018). Design and development of low cost smart turbidity sensor for water quality monitoring in fish farms. Aquacultural Engineering, 81, 10-18. doi:10.1016/j.aquaeng.2018.01.004 es_ES
dc.description.references Sendra, S., Llario, F., Parra, L., & Lloret, J. (2014). Smart Wireless Sensor Network to Detect and Protect Sheep and Goats to Wolf Attacks. Recent Advances in Communications and Networking Technology, 2(2), 91-101. doi:10.2174/22117407112016660012 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem