Mostrar el registro sencillo del ítem
dc.contributor.author | Parra-Boronat, Lorena![]() |
es_ES |
dc.contributor.author | García-García, Laura![]() |
es_ES |
dc.contributor.author | Sendra, Sandra![]() |
es_ES |
dc.contributor.author | Lloret, Jaime![]() |
es_ES |
dc.date.accessioned | 2019-02-13T21:03:23Z | |
dc.date.available | 2019-02-13T21:03:23Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1687-725X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/116717 | |
dc.description.abstract | [EN] Aquaculture is a growing industry, and its sustainability is crucial. One of its major environmental impacts is the uneaten feed that pollutes the water. To minimize the uneaten feed, many systems have been developed. Nevertheless, current systems can be improved by considering the fish position in the tank and the falling feed. In this paper, we propose a system based on fish presence sensors set at different tank heights and a feed detection sensor located in the drainage tubes. The fish presence sensor is based on light-dependent resistor (LDR). The calibration of these sensors is shown. When the output voltage is higher than 1.467 V, we can consider that fish are present. On the other side, the falling feed sensor is based on a CMOS sensor. The calibration process is performed with 40 pictures. The summation of pixels, with brightness value between 0 and 15 in the blue histogram, is used as an indicator of feed presence. If this value is higher than 520 pixels, we can consider that there is feed in the picture. Moreover, a verification process of both sensors is done. The results of the verification confirm the calibration. Finally, the operation of the system is shown. | es_ES |
dc.description.sponsorship | The authors acknowledged "Ministerio de Educacion, Cultura y Deporte," through the "Ayudas para contratos predoctorales de Formacion del Profesorado Universitario (FPU) (Convocatoria 2014)" (Grant number FPU14/02953). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Limited | es_ES |
dc.relation.ispartof | Journal of Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | The Use of Sensors for Monitoring the Feeding Process and Adjusting the Feed Supply Velocity in Fish Farms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2018/1060987 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU2014-02953/ES/FPU2014-02953/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Parra-Boronat, L.; García-García, L.; Sendra, S.; Lloret, J. (2018). The Use of Sensors for Monitoring the Feeding Process and Adjusting the Feed Supply Velocity in Fish Farms. Journal of Sensors. 2018. doi:10.1155/2018/1060987 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1155/2018/1060987 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2018 | es_ES |
dc.relation.pasarela | S\376381 | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.description.references | Jones, A. C., Mead, A., Kaiser, M. J., Austen, M. C. V., Adrian, A. W., Auchterlonie, N. A., … Brown, J. H. (2014). Prioritization of knowledge needs for sustainable aquaculture: a national and global perspective. Fish and Fisheries, 16(4), 668-683. doi:10.1111/faf.12086 | es_ES |
dc.description.references | Parra, L., Sendra, S., García, L., & Lloret, J. (2018). Design and Deployment of Low-Cost Sensors for Monitoring the Water Quality and Fish Behavior in Aquaculture Tanks during the Feeding Process. Sensors, 18(3), 750. doi:10.3390/s18030750 | es_ES |
dc.description.references | Tal, Y., Schreier, H. J., Sowers, K. R., Stubblefield, J. D., Place, A. R., & Zohar, Y. (2009). Environmentally sustainable land-based marine aquaculture. Aquaculture, 286(1-2), 28-35. doi:10.1016/j.aquaculture.2008.08.043 | es_ES |
dc.description.references | Qi, L., Zhang, J., Xu, M., Fu, Z., Chen, W., & Zhang, X. (2011). Developing WSN-based traceability system for recirculation aquaculture. Mathematical and Computer Modelling, 53(11-12), 2162-2172. doi:10.1016/j.mcm.2010.08.023 | es_ES |
dc.description.references | Primavera, J. H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean & Coastal Management, 49(9-10), 531-545. doi:10.1016/j.ocecoaman.2006.06.018 | es_ES |
dc.description.references | Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831-849. doi:10.1016/j.envint.2006.05.002 | es_ES |
dc.description.references | Papadakis, V. M., Papadakis, I. E., Lamprianidou, F., Glaropoulos, A., & Kentouri, M. (2012). A computer-vision system and methodology for the analysis of fish behavior. Aquacultural Engineering, 46, 53-59. doi:10.1016/j.aquaeng.2011.11.002 | es_ES |
dc.description.references | Saberioon, M., Gholizadeh, A., Cisar, P., Pautsina, A., & Urban, J. (2016). Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Reviews in Aquaculture, 9(4), 369-387. doi:10.1111/raq.12143 | es_ES |
dc.description.references | Armstrong, J. D., Braithwaite, V. A., & Rycroft, P. (1996). A flat-bed passive integrated transponder antenna array for monitoring behaviour of Atlantic salmon parr and other fish. Journal of Fish Biology, 48(3), 539-541. doi:10.1111/j.1095-8649.1996.tb01446.x | es_ES |
dc.description.references | Conti, S. G., Roux, P., Fauvel, C., Maurer, B. D., & Demer, D. A. (2006). Acoustical monitoring of fish density, behavior, and growth rate in a tank. Aquaculture, 251(2-4), 314-323. doi:10.1016/j.aquaculture.2005.06.018 | es_ES |
dc.description.references | Zhang, H., Wei, Q., & Kang, M. (2014). Measurement of swimming pattern and body length of cultured Chinese sturgeon by use of imaging sonar. Aquaculture, 434, 184-187. doi:10.1016/j.aquaculture.2014.08.024 | es_ES |
dc.description.references | Atoum, Y., Srivastava, S., & Xiaoming Liu. (2015). Automatic Feeding Control for Dense Aquaculture Fish Tanks. IEEE Signal Processing Letters, 22(8), 1089-1093. doi:10.1109/lsp.2014.2385794 | es_ES |
dc.description.references | Bórquez-Lopez, R. A., Casillas-Hernandez, R., Lopez-Elias, J. A., Barraza-Guardado, R. H., & Martinez-Cordova, L. R. (2018). Improving feeding strategies for shrimp farming using fuzzy logic, based on water quality parameters. Aquacultural Engineering, 81, 38-45. doi:10.1016/j.aquaeng.2018.01.002 | es_ES |
dc.description.references | Papandroulakis, N., Dimitris, P., & Pascal, D. (2002). An automated feeding system for intensive hatcheries. Aquacultural Engineering, 26(1), 13-26. doi:10.1016/s0144-8609(01)00091-7 | es_ES |
dc.description.references | Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654 | es_ES |
dc.description.references | Covès, D., Beauchaud, M., Attia, J., Dutto, G., Bouchut, C., & Bégout, M. L. (2006). Long-term monitoring of individual fish triggering activity on a self-feeding system: An example using European sea bass (Dicentrarchus labrax). Aquaculture, 253(1-4), 385-392. doi:10.1016/j.aquaculture.2005.08.015 | es_ES |
dc.description.references | Zhou, C., Lin, K., Xu, D., Chen, L., Guo, Q., Sun, C., & Yang, X. (2018). Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture. Computers and Electronics in Agriculture, 146, 114-124. doi:10.1016/j.compag.2018.02.006 | es_ES |
dc.description.references | Zhou, C., Zhang, B., Lin, K., Xu, D., Chen, C., Yang, X., & Sun, C. (2017). Near-infrared imaging to quantify the feeding behavior of fish in aquaculture. Computers and Electronics in Agriculture, 135, 233-241. doi:10.1016/j.compag.2017.02.013 | es_ES |
dc.description.references | Parra, L., Rocher, J., Escrivá, J., & Lloret, J. (2018). Design and development of low cost smart turbidity sensor for water quality monitoring in fish farms. Aquacultural Engineering, 81, 10-18. doi:10.1016/j.aquaeng.2018.01.004 | es_ES |
dc.description.references | Sendra, S., Llario, F., Parra, L., & Lloret, J. (2014). Smart Wireless Sensor Network to Detect and Protect Sheep and Goats to Wolf Attacks. Recent Advances in Communications and Networking Technology, 2(2), 91-101. doi:10.2174/22117407112016660012 | es_ES |