- -

A sensitive real-time RT-PCR reveals a high incidence of Southern tomato virus (STV) in Spanish tomato crops

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A sensitive real-time RT-PCR reveals a high incidence of Southern tomato virus (STV) in Spanish tomato crops

Show simple item record

Files in this item

dc.contributor.author Elvira-Gonzalez, Laura es_ES
dc.contributor.author Carpino, C. es_ES
dc.contributor.author Alfaro Fernández, Ana Olvido es_ES
dc.contributor.author Font San Ambrosio, Maria Isabel es_ES
dc.contributor.author Peiró Barber, Rosa Mª es_ES
dc.contributor.author Rubio MIgélez, Luis es_ES
dc.contributor.author Galipienso-Torregrosa, Luis es_ES
dc.date.accessioned 2019-02-27T21:00:23Z
dc.date.available 2019-02-27T21:00:23Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/117413
dc.description.abstract [EN] Southern tomato virus (STV) is a double-stranded RNA (dsRNA) virus belonging to genus Amalgavirus (family Amalgamaviridae). STV has been detected in tomato plants showing different symptoms although it has not been demonstrated that STV is the causal agent. To study the STV incidence and its pathogenic role, a sensitive and quantitative real-time reverse transcription-polymerase chain reaction assay (RT-qPCR) was developed. The standard curve perfonned with viral RNA transcripts allowed a wide dynamic range for STV quantitation from 10(4) to 10(11) copies/ng of total RNA. STV detection by RT-qPCR was 10(2)-fold more sensitive than conventional RT-PCR or RT-LAMP and 10(4)-fold more sensitive than molecular hybridization. STV was detected in different tomato plant tissues, as well as in the coat and the embryo of individual seeds. Also, viral concentration remained constant over time in leaf tissues of STV-infected tomato plants. Surveys on different tomato fields from Spain revealed that STV was widespread. In addition, the virus was detected in almost every tomato variety and nursery analyzed. STV-infected tomato plants did not show any disease-related symptom suggesting that the virus was not directly the causal agent of any tomato disease. However, there is no information about the STV effect in mixed infections or in abiotic stressed conditions and further studies must be performed to clarify it The RT-qPCR assay developed in this work could be implemented on sanitation programs in order to limit the virus spread and could be used to study the effect of STV in mix infections or abiotic stressed conditions. es_ES
dc.description.sponsorship INIA (project E-RTA2014-00010-C02); FEDER 2014-2020 funds. en_EN
dc.language Inglés es_ES
dc.publisher Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria es_ES
dc.relation.ispartof Spanish Journal of Agricultural Research (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Solanum lycopersicum es_ES
dc.subject Amalgaviridae es_ES
dc.subject Amalgavirus es_ES
dc.subject Persistent viruses es_ES
dc.subject RT-qPCR es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification GENETICA es_ES
dc.title A sensitive real-time RT-PCR reveals a high incidence of Southern tomato virus (STV) in Spanish tomato crops es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5424/sjar/2018163-12961 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//E-RTA2014-00010-C02-02/ES/Epidemiología del STV y su implicación en el \"síndrome del falso PepMV\"/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//E-RTA2014-00010-C02-01/ES/Caracterización molecular de aislados españoles de Southern tomato virus (STV) y puesta a punto de métodos de detección del virus/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.description.bibliographicCitation Elvira-Gonzalez, L.; Carpino, C.; Alfaro Fernández, AO.; Font San Ambrosio, MI.; Peiró Barber, RM.; Rubio Migélez, L.; Galipienso-Torregrosa, L. (2018). A sensitive real-time RT-PCR reveals a high incidence of Southern tomato virus (STV) in Spanish tomato crops. Spanish Journal of Agricultural Research (Online). 16(3). https://doi.org/10.5424/sjar/2018163-12961 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/ 10.5424/sjar/2018163-12961 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2171-9292 es_ES
dc.relation.pasarela S\369238 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Alcala-Briseno RI, Coskan S, Londono MA, Polston JE, 2017. Genome sequence of Southern tomato virus in asymptomatic tomato 'Sweet Hearts'. Genome Announc 5 (7): e01374-16. es_ES
dc.description.references Alfaro-Fernández A, Sánchez-Navarro JA, del Carmen Cebrián M, del Carmen Córdoba-Sellés M, Pallás V, Jordá C, 2009. Simultaneous detection and identification of Pepino mosaic virus (PepMV) isolates by multiplex one-step RT-PCR. Eur J Plant Pathol 125: 143-158. es_ES
dc.description.references Ali A, Kobayashi M, 2010. Seed transmission of Cucumber mosaic virus in pepper. J Virol Methods 163: 234-237. es_ES
dc.description.references Aramburu J, Galipienso L, 2005. First report in Spain of a variant of Tomato mosaic virus (ToMV) overcoming the Tm‐22 resistance gene in tomato (Lycopersicon esculentum). Plant Pathol 54: 566-566. es_ES
dc.description.references Arancibia R, Valverde R, Can F, 1995. Properties of a cryptic virus from pepper (Capsicum annuum). Plant Pathol 44: 164-168. es_ES
dc.description.references Blanc S, 2007. Virus transmission-getting out and in. In: Viral transport in plants, pp: 1-28. Springer. es_ES
dc.description.references Boccardo G, Lisa V, Luisoni E, Milne RG, 1987. Cryptic plant viruses. Adv Virus Res 32: 171-214. es_ES
dc.description.references Bustin SA, Benes V, Nolan T, Pfaffl MW, 2005. Quantitative real-time RT-PCR a perspective. J Mol Endocrinol 34: 597-601. es_ES
dc.description.references Candresse T, Marais A, Faure C, 2015. First report of Southern tomato virus on tomatoes in southwest France. Genome 3: e01226-15. es_ES
dc.description.references Chávez-Calvillo G, Contreras-Paredes CA, Mora-Macias J, Noa-Carrazana JC, Serrano-Rubio AA, Dinkova TD, Carrillo-Tripp M, Silva-Rosales L, 2016. Antagonism or synergism between Papaya ringspot virus and Papaya mosaic virus in Carica papaya is determined by their order of infection. Virology 489: 179-191. es_ES
dc.description.references Córdoba-Sellés MC, García-Rández A, Alfaro-Fernández A, Jordá-Gutiérrez C, 2007. Seed transmission of Pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Dis 91: 1250-1254. es_ES
dc.description.references Debreczeni D, Ruiz-Ruiz S, Aramburu J, López C, Belliure B, Galipienso L, Soler S, Rubio L, 2011. Detection, discrimination and absolute quantitation of Tomato spotted wilt virus isolates using real time RT-PCR with TaqMan® MGB probes. J Virol Methods 176: 32-37. es_ES
dc.description.references Elvira-González L, Puchades A, Carpino C, Alfaro-Fernandez A, Font-San-Ambrosio M, Rubio L, Galipienso L, 2017. Fast detection of Southern tomato virus by one-step transcription loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 241: 11-14. es_ES
dc.description.references Falk BW, Tsai JH, 1998. Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol 36: 139-163. es_ES
dc.description.references Ferriol I, Ruiz-Ruiz S, Rubio L, 2011. Detection and absolute quantitation of Broad bean wilt virus 1 (BBWV-1) and BBWV-2 by real-time RT-PCR. J Virol Methods 177: 202-205. es_ES
dc.description.references Gandía M, Bernad L, Rubio L, Duran-Vila N, 2007. Host effect on the molecular and biological properties of a Citrus exocortis viroid isolate from Vicia faba. Phytopathology 97: 1004-1010. es_ES
dc.description.references Gil-Salas F, Peters J, Boonham N, Cuadrado I, Janssen D, 2012. Co-infection with Cucumber vein yellowing virus and Cucurbit yellow stunting disorder virus leading to synergism in cucumber. Plant Pathol 61: 468-478. es_ES
dc.description.references Gómez P, Sempere R, Amari K, Gómez-Aix C, Aranda M, 2010. Epidemics of Tomato torrado virus, Pepino mosaic virus and Tomato chlorosis virus in tomato crops: do mixed infections contribute to torrado disease epidemiology? Ann Appl Biol 156: 401-410. es_ES
dc.description.references Hadas R, Pearlsman M, Gefen T, Lachman O, Hadar E, Sharabany G, Antignus Y, 2004. Indexing system for Tomato mosaic virus (ToMV) in commercial tomato seed lots. Phytoparasitica 32: 421-424. es_ES
dc.description.references Hanssen IM, Mumford R, Blystad D, Cortez I, Hasiów-Jaroszewska B, Hristova D, Pagán I, Pereira A, Peters J, Pospieszny H, 2010. Seed transmission of Pepino mosaic virus in tomato. Eur J Plant Pathol 126: 145-152. es_ES
dc.description.references Hu W, Wong S, Loh C, Goh C, 1998. Synergism in replication of Cymbidium mosaic potexvirus (CymMV) and Odontoglossum ringspot tobamovirus (ORSV) RNA in orchid protoplasts. Arch Virol 143: 1265-1275. es_ES
dc.description.references Iacono G, Hernandez-Llopis D, Alfaro-Fernandez A, Davino M, Font M, Panno S, Galipenso L, Rubio L, Davino S, 2015. First report of Southern tomato virus in tomato crops in Italy. New Disease Reports 32: 27. es_ES
dc.description.references Kormelink R, Garcia ML, Goodin M, Sasaya T, Haenni A, 2011. Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 162: 184-202. es_ES
dc.description.references Krupovic M, Dolja VV, Koonin EV, 2015. Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes. Biol Direct 10: 12. es_ES
dc.description.references Kumar S, Nei M, Dudley J, Tamura K, 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9: 299-306. es_ES
dc.description.references Ling K, Wechter WP, Jordan R, 2007. Development of a one-step immunocapture real-time TaqMan RT-PCR assay for the broad spectrum detection of Pepino mosaic virus. J Virol Methods 144: 65-72. es_ES
dc.description.references Logan J, Edwards KJ, Saunders NA (eds), 2009. Real-time PCR: Current technology and applications. A practical handbook. Caister Academic Press, 284 pp. es_ES
dc.description.references Mackay IM, Arden KE, Nitsche A, 2002. Real-time PCR in Virology. Nucleic Acids Res 30: 1292-1305. es_ES
dc.description.references Martin RR, Zhou J, Tzanetakis IE, 2011. Blueberry latent virus: an amalgam of the Partitiviridae and Totiviridae. Virus Res 155: 175-180. es_ES
dc.description.references Murphy JF, Bowen KL, 2006. Synergistic disease in pepper caused by the mixed infection of Cucumber mosaic virus and Pepper mottle virus. Phytopathology 96: 240-247. es_ES
dc.description.references Padmanabhan C, Zheng Y, Li R, Fei Z, Ling KS, 2015a. Complete genome sequence of Southern tomato virus naturally infecting tomatoes in Bangladesh. Genome Announc 3 (6): e01522-15. es_ES
dc.description.references Padmanabhan C, Zheng Y, Li R, Sun S.E, Zhang D, Liu Y, Fei Z, Ling KS, 2015b. Complete genome sequence of Southern tomato virus identified in China using next-generation sequencing. Genome Announc 3 (5):e01226-15. es_ES
dc.description.references Puchades A, Carpino C, Alfaro-Fernandez A, Font-San-Ambrosio M, Davino S, Guerri J, Rubio L, Galipienso L, 2017. Detection of Southern tomato virus by molecular hybridization. Ann Appl Biol 171: 172-178. es_ES
dc.description.references Roossinck MJ, 2010. Lifestyles of plant viruses. Philos T R Soc B 365: 1899-1905. es_ES
dc.description.references Sabanadzovic S, Valverde RA, Brown JK, Martin RR, Tzanetakis IE, 2009. Southern tomato virus: the link between the families Totiviridae and Partitiviridae. Virus Res 140: 130-137. es_ES
dc.description.references Sabanadzovic S, Ghanem-Sabanadzovic NA, Valverde R, 2010. A novel monopartite dsRNA virus from rhododendron. Arch Virol 155: 1859-1863. es_ES
dc.description.references Sabanadzovic S, Valverde RA, 2011. Properties and detection of two cryptoviruses from pepper (Capsicum annuum). Virus Genes 43: 307-312. es_ES
dc.description.references SAS Institute, 2003. SAS/STAT User's Guide. Vers. 9.1. Vol 1-7. SAS Inst. Inc., Cary, NC, USA. es_ES
dc.description.references Sastry KS, 2013. Methods of combating seed-transmitted virus diseases. In: Seed-borne plant virus diseases, pp: 185-284. Springer. es_ES
dc.description.references Tromas N, Zwart MP, Lafforgue G, Elena SF, 2014. Within-host spatiotemporal dynamics of plant virus infection at the cellular level. PLoS Genet 10: e1004186. es_ES
dc.description.references Verbeek M, Dullemans AM, Espino A, Botella M, Alfaro-Fernández A, Font MI, 2015. First report of Southern tomato virus in tomato in the Canary Islands, Spain. J Plant Pathol 97 (2): 392. es_ES
dc.description.references Wintermantel WM, 2005. Co-infection of Beet mosaic virus with Beet yellowing viruses leads to increased symptom expression on sugar beet. Plant Dis 89: 325-331. es_ES


This item appears in the following Collection(s)

Show simple item record