- -

Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Asadi, Abouzar es_ES
dc.contributor.author Zebarjadi, Alireza es_ES
dc.contributor.author Abdollahi, Mohammad Reza es_ES
dc.contributor.author Seguí-Simarro, Jose M. es_ES
dc.date.accessioned 2019-02-27T21:00:45Z
dc.date.available 2019-02-27T21:00:45Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0014-2336 es_ES
dc.identifier.uri http://hdl.handle.net/10251/117416
dc.description.abstract [EN] Cucumber is one of the most important vegetable crops worldwide, which makes it a good candidate to produce doubled haploid (DH) lines to accelerate plant breeding. Traditionally, these approaches involved induction of gynogenesis or parthenogenesis with irradiated pollen, which carries some disadvantages compared to androgenesis. Despite this, studies on anther/microspore cultures in cucumber are surprisingly scarce. Furthermore, most of them failed to unambiguously demonstrate the haploid origin of the individuals obtained. In this work we focused on anther cultures using two cucumber genotypes, different previously published protocols for anther culture, different in vitro culture variants to make it more efficient, and most importantly, a combination of flow cytometry and microsatellite molecular markers to evaluate the real androgenic potential and the impact of anther wall tissue proliferation. We developed a method to produce DH plants involving a bud pretreatment at 4 C, a 35 C treatment to anthers, culture with BAP and 2,4-D, and induction of callus morphogenesis by an additional 35 C treatment and sequential culture first in liquid medium in darkness and second in solid medium with light. We also found that factors such as genotype, proliferation of anther wall tissues, orientation of anthers in the culture medium and growth regulator composition of the initial anther culture medium have a remarkable impact. Our rate of chromosome doubling (81%) was high enough to exclude additional chromosome doubling steps. Together, our results present androgenesis as an improvable but yet more convenient alternative to traditional gynogenesis and parthenogenesis-based approaches. es_ES
dc.description.sponsorship Thanks are due to all the whole staff of the Cell Biology Group for helping and training AA during his stay in the group. This work was supported by Grant AGL2017- 88135-R to JMSS from Spanish Ministerio de Economı´a y Competitividad (MINECO) jointly funded by FEDER.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Euphytica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Androgenesis es_ES
dc.subject Callogenesis es_ES
dc.subject Chromosome doubling es_ES
dc.subject Cucurbits es_ES
dc.subject Embryogenesis es_ES
dc.subject Organogenesis es_ES
dc.subject.classification GENETICA es_ES
dc.title Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10681-018-2297-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-88135-R/ES/DISECCION DE LA RESPUESTA EMBRIOGENICA DE LAS MICROSPORAS: ANALISIS FISIOLOGICO Y GENOMICO DE LA RECALCITRANCIA A LA INDUCCION DE EMBRIOGENESIS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Asadi, A.; Zebarjadi, A.; Abdollahi, MR.; Seguí-Simarro, JM. (2018). Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.). Euphytica. 214(216):1-17. https://doi.org/10.1007/s10681-018-2297-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10681-018-2297-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 214 es_ES
dc.description.issue 216 es_ES
dc.relation.pasarela S\371657 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Abdollahi MR, Najafi S, Sarikhani H, Moosavi SS (2016) Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium. Turk J Biol 40(3):571–579 es_ES
dc.description.references Ashok Kumar HG, Murthy HN (2004) Effect of sugars and amino acids on androgenesis of Cucumis sativus. Plant Cell, Tissue Organ Cult 78(3):201–208. https://doi.org/10.1023/b:ticu.0000025637.56693.68 es_ES
dc.description.references Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6(4):1247–1260. https://doi.org/10.1093/mp/sss154 es_ES
dc.description.references Claveria E, Garcia-Mas J, Dolcet-Sanjuan R (2005) Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J Am Soc Hortic Sci 130(4):555–560 es_ES
dc.description.references Corral-Martínez P, Nuez F, Seguí-Simarro JM (2011) Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms1035 tomato anthers. Euphytica 178(2):215–228. https://doi.org/10.1007/s10681-010-0303-z es_ES
dc.description.references Danin-Poleg Y, Reis N, Tzuri G, Katzir N (2001) Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 102(1):61–72. https://doi.org/10.1007/s001220051618 es_ES
dc.description.references Dong Y-Q, Zhao W-X, Li X-H, Liu X-C, Gao N-N, Huang J-H, Wang W-Y, Xu X-L, Tang Z-H (2016) Androgenesis, gynogenesis, and parthenogenesis haploids in cucurbit species. Plant Cell Rep. https://doi.org/10.1007/s00299-016-2018-7 es_ES
dc.description.references FAOSTAT (2018) http://faostat.fao.org. Accessed July 2018 es_ES
dc.description.references Ficcadenti N, Sestili S, Annibali S, Di Marco M, Schiavi M (1999) In vitro gynogenesis to induce haploid plants in melon Cucumis melo L. Genet Breed 53:255–257 es_ES
dc.description.references Gałązka J, Niemirowicz-Szczytt K (2013) Review of research on haploid production in cucumber and other cucurbits. Folia Hortic. https://doi.org/10.2478/fhort-2013-0008 es_ES
dc.description.references Hamidvand Y, Abdollahi MR, Chaichi M, Moosavi SS (2013) The effect of plant growth regulators on callogenesis and gametic embryogenesis from anther culture of cucumber (Cucumis sativus L.). Int J Agric Crop Sci 5(10):1089 es_ES
dc.description.references Kurtar ES, Balkaya A, Kandemir D (2016) Evaluation of haploidization efficiency in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) through anther culture. Plant Cell, Tissue Organ Cult 127(2):497–511. https://doi.org/10.1007/s11240-016-1074-6 es_ES
dc.description.references Lotfi M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21(11):1121–1128 es_ES
dc.description.references Metwally EI, Moustafa SA, El-Sawy BI, Shalaby TA (1998) Haploid plantlets derived by anther culture of Cucurbita pepo. Plant Cell, Tissue Organ Cult 52(3):171–176. https://doi.org/10.1023/a:1005908326663 es_ES
dc.description.references Mohamed M, Refaei E (2004) Enhanced haploids regeneration in anther culture of summer squash (Curcurbita pepo L.). Cucurbit Genet Coop Rep 27:57–60 es_ES
dc.description.references Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479 es_ES
dc.description.references Parra-Vega V, Renau-Morata B, Sifres A, Seguí-Simarro JM (2013) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell, Tissue Organ Cult 112(3):353–360. https://doi.org/10.1007/s11240-012-0242-6 es_ES
dc.description.references Rakha M, Metwally E, Moustafa S, Etman A, Dewir Y (2012) Evaluation of regenerated strains from six Cucurbita interspecific hybrids obtained through anther and ovule in vitro cultures. Aust J Crop Sci 6(1):23–30 es_ES
dc.description.references Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018. https://doi.org/10.1073/pnas.81.24.8014 es_ES
dc.description.references Sauton A, Dumas de Vaulx R (1987) Obtention de plantes haploides chez melon (Cucumis melo L.) par gynogenese indute par du pollen irraidié. Agronomie 7:141–148 es_ES
dc.description.references Seguí-Simarro JM (2016) Androgenesis in solanaceae. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis. Methods in molecular biology, vol 1359. Springer, New York, pp 209–244. https://doi.org/10.1007/978-1-4939-3061-6_9 es_ES
dc.description.references Seguí-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hort 725:855–861 es_ES
dc.description.references Seguí-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58(5):1119–1132 es_ES
dc.description.references Seguí-Simarro JM, Nuez F (2008) Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120(3–4):358–369. https://doi.org/10.1159/000121085 es_ES
dc.description.references Shalaby TA (2006) Embryogenesis and plantlets regeneration from anther culture of squash plants (Cucurbita pepo L.) as affected by different genotypes. J Agric Res Tanta Univ 32(1):173–183 es_ES
dc.description.references Song H, Lou QF, Luo XD, Wolukau JN, Diao WP, Qian CT, Chen JF (2007) Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant Cell, Tissue Organ Cult 90(3):245–254. https://doi.org/10.1007/s11240-007-9263-y es_ES
dc.description.references Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45(10):705–708 es_ES
dc.description.references Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in arabidopsis. Plant J 59(3):448–460. https://doi.org/10.1111/j.1365-313X.2009.03880.x es_ES
dc.description.references Suprunova T, Shmykova N (2008) In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. In: Cucurbitaceae 2008: proceedings of the IXth Eucarpia meeting on genetics and breeding of cucurbitaceae, pp 371–374 es_ES
dc.description.references Xie M, Qin L-Y, Pan J-S, He H-L, Wu A-Z, Cai R (2005) Flower morphogenesis and microspore development versus anther culture of cucumber. Acta Bot Boreal-Occid Sin 25(6):1096 es_ES
dc.description.references Zhan Y, Chen J-F, Malik AA (2009) Embryoid induction and plant regeneration of cucumber (Cucumis sativus L.) through microspore culture. Acta Hort Sin 36(2):221–226 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem