- -

Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Montanes, Nestor es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Ferrándiz Bou, Santiago es_ES
dc.contributor.author Fenollar, Octavio es_ES
dc.contributor.author Boronat, Teodomiro es_ES
dc.date.accessioned 2019-03-01T13:33:44Z
dc.date.available 2019-03-01T13:33:44Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1566-2543 es_ES
dc.identifier.uri http://hdl.handle.net/10251/117533
dc.description.abstract [EN] Wood-like plastic composites were manufactured with a thermoplastic matrix polymer from renewable resources, i.e. high-density poly(ethylene) from bioethanol and a lignocellulosic filler obtained as a byproduct of the industrial distillation of thyme. The potential manufacturing of these composites by injection molding was studied. For this purpose, an in depth study of the effects of the lignocellulosic loading (comprised between 10 and 50 wt%) on the rheological properties of these composites was carried out by using capillary rheometry and model fitting with the Cross-WLF rheological model. In addition, a side by side comparison of the experimental results and those obtained by simulations with MoldFlow® was provided. In addition, the values of the pressure in the cavity and in the sprue were measured and collected by two selectively mounted pressure sensors and the results were compared with those predicted by MoldFlow® with the inputs provided by the Cross-WLF fitting model. The results showed a remarkable increase in viscosity with increasing lignocellulosic filler content, which has a negative effect on overall processability. This phenomenon specifically intense at low shear rates. However, this phenomenon could be potentially minimized using high shear rates because of the shear thinning effect of pseudoplastic fluids. Both the experimental and simulated results suggest the need of higher pressures to fill the cavity with these WPC, specifically for those with high filler content of up to 50 wt%. The results of the study indicate that melt viscosity is highly linked to the cavity pressure which is the dominant factor determining the quality of the final product in plastic injection molding. es_ES
dc.description.sponsorship This research was supported by the Ministry of Economy and Competitiveness – MINECO through the grant number MAT2014-59242-C2-1-R. Authors also wish to thank “Licores Sinc, S.A.” for kindly supplying the thyme wastes.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Polymers and the Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Natural fibers es_ES
dc.subject Rheological properties es_ES
dc.subject Process simulation es_ES
dc.subject Injection molding es_ES
dc.subject Thyme es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10924-019-01388-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Montanes, N.; Quiles-Carrillo, L.; Ferrándiz Bou, S.; Fenollar, O.; Boronat, T. (2019). Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-019-01388-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10924-019-01388-0 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\377713 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Koivuranta E et al (2017) Improved durability of lignocellulose-polypropylene composites manufactured using twin-screw extrusion. Compos Part A 101:265–272 es_ES
dc.description.references Tufan M et al (2016) Technological and thermal properties of thermoplastic composites filled with heat-treated alder wood. BioResources 11(2):3153–3164 es_ES
dc.description.references Puglia D, Fortunati E, Kenny JM, Editors (2016) Extraction of lignocellulosic materials from waste products. In: Multifunctional polymeric nanocomposites based on cellulosic reinforcements. Elsevier, Oxford, p 408 es_ES
dc.description.references Huang L et al (2016) Sustainable use of coffee husks for reinforcing polyethylene composites. J Polym Environ 26:48–58 es_ES
dc.description.references Fabiyi JS et al (2008) Wood plastic composites weathering: visual appearance and chemical changes. Polym Degrad Stab 93(8):1405–1414 es_ES
dc.description.references Ruiz-Navajas Y et al (2013) In vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. J Food Prot 76(7):1218–1225 es_ES
dc.description.references Díaz-García MC et al (2015) Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods. J Sci Food Agric 95(6):1283–1293 es_ES
dc.description.references Bhullar SK, Kaya B, Jun MB-G (2015) Development of bioactive packaging structure using melt electrospinning. J Polym Environ 23(3):416–423 es_ES
dc.description.references Cicala G et al (2016) Investigation on structure and thermomechanical processing of biobased polymer blends. J Polym Environ 25:750–758 es_ES
dc.description.references George J et al (1996) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37(24):5421–5431 es_ES
dc.description.references Joseph PV et al (2002) Melt rheological behaviour of short sisal fibre reinforced polypropylene composites. J Thermoplast Compos Mater 15(2):89–114 es_ES
dc.description.references Kalaprasad G et al (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. I. Untreated fibers. J Appl Polym Sci 89(2):432–442 es_ES
dc.description.references Kalaprasad G, Thomas S (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. II. Chemical modification. J Appl Polym Sci 89(2):443–450 es_ES
dc.description.references Kumar RP et al (2000) Morphology and melt rheological behaviour of short-sisal-fibre-reinforced SBR composites. Compos Sci Technol 60(9):1737–1751 es_ES
dc.description.references Li T, Wolcott M (2005) Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple. Polym Eng Sci 45(4):549–559 es_ES
dc.description.references Li T, Wolcott M (2006) Rheology of wood plastics melt, part 2: effects of lubricating systems in HDPE/maple composites. Polym Eng Sci 46(4):464–473 es_ES
dc.description.references Li TQ, Wolcott MP (2004) Rheology of HDPE-wood composites. I. Steady state shear and extensional flow. Composites Part A 35(3):303–311 es_ES
dc.description.references Mohanty S, Nayak SK (2007) Rheological characterization of jute/HDPE composites. In: Zhang D et al. (eds) Advanced materials and processing Iv, p 279 es_ES
dc.description.references Ou R et al (2014) Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Compos Sci Technol 93:68–75 es_ES
dc.description.references Hristov V, Vlachopoulos J (2007) Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol Mater Eng 292(5):608–619 es_ES
dc.description.references Mohanty S, Nayak SK (2007) Rheological characterization of HDPE/sisal fiber composites. Polym Eng Sci 47(10):1634–1642 es_ES
dc.description.references Koszkul J, Nabialek J (2004) Viscosity models in simulation of the filling stage of the injection molding process. J Mater Process Technol 157–158:183–187 es_ES
dc.description.references Mazzanti V, Mollica F (2016) In-process measurements of flow characteristics of wood plastic composites. J Polym Environ 25:1044–1050 es_ES
dc.description.references Montanes N et al (2017) Processing and characterization of environmentally friendly composites from biobased polyethylene and natural fillers from thyme herbs. J Polym Environ 26:1218–1230 es_ES
dc.description.references Shenoy A, Saini D (1984) Rheological models for unified curves for simplified design calculations in polymer processing. Rheologica Acta 23(4):368–377 es_ES
dc.description.references Bagley E (1957) End corrections in the capillary flow of polyethylene. J Appl Phys 28(5):624–627 es_ES
dc.description.references Rabinowitsch B (1929) Über die Viskosität und Elastizität von Solen. Z Physik Chem A 145:1–26 es_ES
dc.description.references Cross MM (1965) Rheology of non-newtonian fluids—a new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417 es_ES
dc.description.references Williams ML, Landel RF, Ferry JD (1955) Mechanical properties of substances of high molecular weight. 19. the temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707 es_ES
dc.description.references Carneiro OS, Maia JM (2000) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part I: the influence of fiber type, processing conditions and level of incorporation. Polym Compos 21(6):960–969 es_ES
dc.description.references Crowson RJ, Folkes MJ, Bright PF (1980) Rheology of short glass fiber-reinforced thermoplastics and its application to injection molding I. Fiber motion and viscosity measurement. Polym Eng Sci 20(14):925–933 es_ES
dc.description.references Goldsmith H (1967) Rheology theory and application, Mason SG (eds) Academic Press, p 85 es_ES
dc.description.references Reig MJ, Segui VJ, Zamanillo JD (2005) Rheological behavior modeling of recycled ABS/PC blends applied to injection molding process. J Polym Eng 25(5):435–457 es_ES
dc.description.references Părpăriţă E et al (2014) Structure–morphology–mechanical properties relationship of some polypropylene/lignocellulosic composites. Mater Des 56:763–772 es_ES
dc.description.references Kurt M et al (2009) Experimental investigation of plastic injection molding: assessment of the effects of cavity pressure and mold temperature on the quality of the final products. Mater Des 30(8):3217–3224 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem